Туманность розетка windows 10

Туманность NGC 2237 «Розетка» в линии водорода

Хоть немного, хоть чуть-чуть, пусть под утро, но наконец-то в этом месяце появилось ясное небо. Настоящий подарок к Новому Году)

— Телескоп Synta BKP150750

— Монтировка Sky-Watcher NEQ6 Pro

— Фильтр Baader H-alpha 7 nm 1.25″

— Камера ZWO ASI1600MM-Cool

28 кадров по 300 сек, в сумме 2 часа 20 минут

Место съемки: Азов, 28 декабря 2017

Найдены возможные дубликаты

Исследователи космоса

7.8K поста 36.3K подписчика

Правила сообщества

Какие тут могут быть правила, кроме правил установленных самим пикабу 🙂

такой большой мир и такие маленькие мы..

Блин, с трудом верится, что такое фото можно сделать без использования различных «Хабблов». Однако здорово!

Невероятный снимок, еще бы в цвете.

Будет в цвете) Как в следующий раз дадут погоду, отсниму в другом фильтре и сделаю цвет.

— Телескоп Synta BKP150750

— Монтировка Sky-Watcher NEQ6 Pro

— Фильтр Baader H-alpha 7 nm 1.25″

— Камера ZWO ASI1600MM-Cool

28 кадров по 300 сек, в сумме 2 часа 20 минут

Скажите,а сколько стоит все это оборудование вместе?

Я дико, дико извиняюсь, но как-то пропустил Ваш вопрос, и только сейчас, просто просматривая пост, увидел его. На самом деле я не все указал, что использовалось для съемки, и указал только самое-самое важное. Вообще дело это недешевое, я конечно не сразу потратил всю сумму, но на съемку этого объекта, используя в основном б/у оборудование, я потратил около 250 000 рублей.

А засыпающий ТС — сколько стоит?

*
На некоторое время это затмит все остальные факторы 🙂

А зачем делать несколько снимков? Почему нельзя просто поставить очень долгую выдержку?

Один снимок достаточно шумный, а сложение многих убирает шумы и в целом повышает соотношение сигнал/шум.

Как космо «еспрет» РенТВ, авторитетно заявляю, что это космический пончик/

Растущая Луна. Фаза 88%

Снято на Canon 600D с объективом Canon 55-250mm.

Я всегда думал, что для путёвого снимка Луны нужно фокусное расстояние от 400мм и выше. Но в моей коллекции максимум — это 250 мм. Поэтому пришлось играться с обработкой. Игрался в PIPP, Autostakkert и Photoshop.

Ну и вот, доигрался.

Съемка по технике HDR, когда для неосвещенной части Луны используется фото в полнолуние.

Фото в высоком разрешении как всегда по ссылке на диске, а также в моём недавно открытом телеграм канале про астрофотографию.

Больше ночных фотографий и астрофотографий в моем инстаграме.

10 самых больших телескопов

Что может увидеть телескоп с зеркалом в 40 метров? Какую обсерваторию спонсирует Билл Гейтс? И какой радиотелескоп можно уничтожить в Battlefield 4? Ответы на эти и другие вопросы вы узнаете в подборке самых больших телескопов мира от Naked Science.

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа – фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения – Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт / ©LSST Corporation

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.

South African Large Telescope / ©Franklin Projects

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.

Keck на закате / ©SiOwl

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.

Gran Telescopio Camarias / ©Pachango

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры – в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Читайте также:  Linux init что это

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона – с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.

Arecibo Observatory / ©Wikimedia Commons

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя – в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.

Радиотелескопы системы ALMA / ©ESO/C.Malin

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии – GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника – космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований – поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями – оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.

Концепт Giant Magellan Telescope / ©GMTO Corporation

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.

Концепт Thirty Meter Telescope / ©Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта – 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.

Художественное изображение 5-километрового ядра SKA / ©SPDO/Swinburne Astronomy Production

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

Авторы проекта Thirty Meter Telescope заявляют, что их астрономический инструмент будет крупнейшим оптическим телескопом в мире.

На пару лет – возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики – то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

Заявленная представителями Европейской южной обсерватории (авторами проекта) стоимость телескопа – 1 миллиард евро.

Концепт European Extremely Large Telescope / ©ESO/L. Calçada

Сравнение размеров E-ELT и египетских пирамид / ©Abovetopsecret

Вега — голубая жемчужина северных небес

Вега — удивительно красивая и притягательная звезда. Одна из ярчайших на всем небе, а в северном его полушарии она конкурирует с оранжевым Арктуром из созвездия Волопаса за право считаться ярчайшей звездой северного небосвода. В отличие от Арктура, Вега отчетливо голубого цвета.

Читайте также:  Tall windows that open

Долгое время об этой звезде астрономы не могли сказать ничего кроме уже перечисленного выше.

Она считалась звездой-одиночкой, с постоянным блеском — не переменная, никак не связанная ни с какими другими феноменами или явлениями — не наблюдалось вокруг неё никакой туманности, и спектр звезды был в полном порядке. Но она все равно привлекала к себе пристальное внимание ученых. Ну, не может быть, чтобы такая красавица, и без какого-то секрета!

Стоит иметь в виду, что для астрономов не бывает неинтересных объектов — бывают недообследованные. И по части обследований Веге досталось поболее, чем любой другой звезде.

Когда только зарождалась астрофотография, Вегу выбрали для первого фотоснимка. История изучения звездных спектров вновь началась с Веги. Вега стала первой звездой, до которой удалось измерить расстояние методом измерения параллакса.

Разговор о том, что это за метод такой, заслуживает отдельной статьи, но если кратко, то положение Земли в пространстве постоянно меняется — Земля обращается вокруг Солнца. Это приводит к тому, что в разные сезоны мы смотрим на звезды из разных точек. В результате видимое расположение звезд несколько меняется. Те, что поближе смещаются на фоне тех, что подальше. Вега оказалась относительно недалеко. Хотя все равно астрономы были обескуражены величиной межзвездных дистанций — 25 световых лет — это 250 000 умножить на триллион километров — и это ведь до одной из ближайших звезд.

Вега летит к нам навстречу со скоростью 20 километров в секунду. Это почти ничего не меняет, но все-таки приятно. Причем, звезда смотрит на нас одним из своих полюсов. Это обстоятельство сильно затрудняло изучение её осевого вращения. Но потом выяснилось, что это стремительный звездный волчок, который едва ли не разрывает себя части своим фантастически быстрым вращением — один оборот менее чем за сутки, с линейной скоростью вращения на экваторе в 230 километров в секунду.

Относительно недавно вокруг звезды был обнаружен протопланетный диск, а сейчас ученые уже склоны подозревать, что как минимум одна планета могла успеть сформироваться. Разумеется речи о её обитаемости нет — уж очень молода Вега и вся окружающая её экосистема.

В средних широтах северного полушария Земли Вега является незаходящим светилом. Она видна круглый год. Но лучшее время для её наблюдений — с весны по позднюю осень.

Вега возглавляет собой небольшое, но очень красивое созвездие Лиры — богатое интересными астрономическими объектами доступными для наблюдений даже в бинокль, а уж для владельцев небольших телескопов оно являет собой буквально жемчужную россыпь, в которой Вега бесспорно может считаться самой красивой жемчужиной.

Много лет назад я посвятил этой звезде одну из своих мелодий. Она так и называется — «Вега». Приближался концерт, а я вдруг вспомнил, что у меня нет для этой пьесы сопровождающего её живое исполнение видеоролика. И в ночь перед концертом я в полусне нарисовал несколько картинок — очень поспешно и небрежно, собрал из этих картинок видеоролик и исполнил под него произведение. И оказалось, что именно он понравился и запомнился слушателям более всего остального. И по сей день этот ролик самый популярный на Youtube среди прочих моих видеосюжетов.

Прикрепляю ссылку на него в завершении этого небольшого рассказа о звездах.

Кому понравится эта мелодия, наверняка понравится и весь альбом, который, в свою очередь, посвящен уже целому созвездию Лиры.

Приятного просмотра/прослушивания, Друзья. И плодотворных наблюдений!

Визуализация НАСА исследует дважды искаженный мир двоичных черных дыр

На этой визуализации НАСА пара черных дыр, вращающихся по орбите, в миллионы раз больше массы Солнца, исполняет гипнотический танец. В видео показано, как черные дыры искажают и перенаправляют свет, исходящий от водоворота горячего газа, называемого аккреционным диском, который окружает каждую из них.

Если смотреть со стороны плоскости орбиты, каждый аккреционный диск приобретает характерный искаженный вид. Но когда одна проходит впереди другой, гравитация черной дыры на переднем плане превращает ее партнера в быстро меняющуюся последовательность дуг. Эти искажения проявляются, когда свет от аккреционных дисков перемещается по запутанной ткани пространства и времени рядом с черными дырами.

Смоделированная система содержит две сверхмассивные черные дыры, большую, с массой 200 миллионов Солнца, и меньшего компаньона, весящего вдвое меньше. Астрономы считают, что в подобных двойных системах обе черные дыры могут поддерживать аккреционные диски в течение миллионов лет.

Больше в телеграмм-канале На Всю Голову Технарь

Ночной пейзаж. Дорога к Кассиопее

Canon 5Da Mark II + Canon EF 16-35/2.8 LII USM

35mm / ISO-3200 / f-2.8 / 20 sec

Стекинг из 5 кадров в Sequator, обработка LR и PS

Легендарная галактика М87. Смотрим на скопление галактик в Деве в любительский телескоп

Легендарная галактика М87. Смотрим на скопление галактик в Деве в любительский телескоп

Весна — отличное время для наблюдений созвездия Девы. А оно просто напичкано разными галактиками, там огромное скопление Галактик. В том числе там находится и легендарная галактика М87, в центре которой расположена сверхмассивная черная дыра, изображение которой впервые получено учеными.

М87 и многие другие галактики можно увидеть в любительский телескоп. И сегодня я покажу, как их отыскать на небе, и как они выглядят в телескоп.

Солнце, 14 апреля 2021 года, 10:15

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

А все-таки они существуют. Черные дыры промежуточных масс | Линии магнитного поля черной дыры М87

Это фотография не промежуточной черной дыры согласно названию этого ролика, это новый снимок первой сфотографированной черной дыры. Благодаря новым данным ученые смогли сказать больше о механизмах образования высокоэнергетических джетов.

Но, а также сегодня в ролике, все-таки они существуют, черные дыры промежуточных масс, как их обнаружили, и как они образовались во вселенной?

Всем привет, вы на канале forest of science лес науки, подписывайся, и познавай вселенную вместе с нами, мы начинаем!

Первый прямой снимок окрестностей черной дыры проектом EHT был опубликован 10 апреля 2019 года, и уже на следующий день ученые пообещали повысить четкость изображения. Как мы теперь видим, специалисты со всего мира действительно не сидели сложа руки. К уже полученному изображению добавились результаты анализа поляризованного света.

И таким образом ученые впервые запечатлели магнитное поле вокруг черной дыры и уточнили, как образуются джеты.

Магнитное поле вокруг черной дыры ускоряет электроны в пространстве вокруг нее. Часть из них излучает фотоны, причем поляризация этого света зависит от направления ускорения. Таким образом, отфильтровав все лишнее излучение и запечатлев только поляризованный свет, можно буквально увидеть рисунок линий магнитного поля. В нашем случае — вокруг сверхмассивной черной дыры в центре галактики M87. Его мощность колеблется между 1(одним) и 30(тридцатью) гауссами, что в 50 раз мощнее, чем у полюсов Земли.

Эти данные являются ключевыми для объяснения механизма образования высокоэнергетических джетов – струйных выбросов из ядра галактики Messier 87.

Для описания поведения вещества в окрестности черной дыры астрономы построили множество различных моделей, но они так и не могут до конца понять, каким образом из расположенной в центре галактики области, сравнимой по размерам с Солнечной системой, могут истекать столь протяженные джеты. Неясно до сих пор и то, как именно происходит падение вещества в черную дыру.

Именно последние данные приводят к пониманию того, как магнитное поле помогает черной дыре поглощать вещество и испускать мощные джеты.

Наблюдения свидетельствуют о том, что магнитные поля на краю чёрной дыры достаточно сильны, чтобы отталкивать горячий газ и помогать ему сопротивляться мощному гравитационному притяжению. Та часть газа, которой удаётся проскользнуть через «магнитное заграждение» образует спиральный поток, устремляющийся к горизонту событий.

Ну что-ж, черная дыра в центре галактики Messier 87 относится к сверхмассивным черным дырам. Изначально ученым были известны черные дыры звездных масс от единиц до нескольких десятков масс Солнца, их еще называют маленькими черными дырами, и сверхмассивные черные дыры, масса которых составляет миллионы и миллиарды Солнечных масс.

Читайте также:  Windows не грузится с ssd при подключенном hdd

Но это все, что было известно, пока ученые не выделили еще одну группу черных дыр, это черные дыры промежуточных масс, иначе говоря черные дыры средних размеров.

Однако до сих пор это все было гипотетически, пока ученые недавно не выпустили статью, где показали, что возможно обнаружили растущую черную дыру промежуточной массы.

Но давайте сначала разберемся с чего же все это началось.

Вернемся в 2003 год, когда впервые всерьез начали говорить о черных дырах промежуточной массы.

Уже тогда ученые знали, что черная дыра звездной массы образуется, когда массивная звезда претерпевает взрывную смерть, называемую сверхновой. Это взрыв, который может затмить целую галактику звезд примерно на неделю, оставляя после себя маленькое тяжелое ядро звезды. Если это ядро достаточно массивное, оно схлопнется само и образует черную дыру. Наше Солнце слишком мало или недостаточно массивно, чтобы образовать черную дыру, когда у него, наконец, закончится топливо.

Сверхмассивные черные дыры существуют в центре большинства галактик, включая нашу Галактику Млечный Путь. Они невероятно тяжелые, их масса колеблется от миллионов до миллиардов солнечных масс. Почему они такие невероятно массивные, неизвестно, но астрономы уверены, что их развитие связано с их присутствием в центре галактик. Здесь так много звезд, газа и пыли, что черная дыра может очень быстро разрастаться. А поскольку многие галактики неоднократно сталкиваются в течение своей долгой жизни, у сверхмассивных черных есть прекрасная возможность столкнуться и слиться в еще более тяжелые сверхмассивные черные дыры.

Но все же, даже в этом случае ученые не могут точно сказать, как же образуются такие монстры, как сверхмассивные черные дыры.

По оценкам, промежуточная черная дыра имеет массу от 100 до 100000 масс Солнца. Ни одна звезда не могла образовать такую тяжелую черную дыру. По мнению астрономов, такие черные дыры могут образовываться только одним способом: одна черная дыра может поглотить много-много материала, чтобы подняться до требуемого веса, или чтобы отдельные черные дыры слились вместе.

Однако оба этих сценария создают вопросы, на которые астрономы не могут ответить прямо сейчас.

Проблема в том, что, в отличие от так сказать «легкого» звездного класса черных дыр и «тяжелого» сверхмассивного класса, не существует известного способа образования черных дыр промежуточной массы. Их существование, которое было показано лишь косвенно еще в 2003 году, не может быть объяснено существующей теорией образования черных дыр.

Да конечно, с 2003 года вышло очень много статей на эту тему, однако, нам интересна самая последняя статья, которая была опубликована 29 марта в журнале Nature Astronomy.

Но прежде, давайте обратимся к более раннему исследованию, которое было опубликовано 31 марта 2020 года. с помощью космического телескопа хаббл предположительно удалось обнаружить черную дыру промежуточной массы в рентгеновском диапазоне.

В 2006 году космические обсерватории (Чандра НАСА и XMM-Newton) зарегистрировали мощную вспышку рентгеновских лучей, но не смогли определить, возникла она внутри или за пределами нашей галактики. Исследователи объяснили это тем, что звезда разорвалась на части после того, как подошла слишком близко к гравитационно мощному компактному объекту, например, черной дыре.

Стоит отметить, что источник рентгеновского излучения (3XMM J215022.4−055108) не был расположен в центре галактики, где обычно располагались бы массивные черные дыры. И возможно это и есть черная дыра промежуточной массы.

Космический телескоп Хаббл, получил изображения с высоким разрешением подтверждающие то, что рентгеновские лучи исходят не из нашей галактики, а из плотного звездного скопления на окраине другой галактики — именно в таком месте, которое астрономы ожидали найти объекты такого класса. Но рентгеновское свечение разорванной звезды позволило астрономам не только обнаружить, но и оценить массу черной дыры в 50 000 солнечных масс.

Три миллиарда лет назад во Вселенной произошел гамма-всплеск (GRB 950830). В 1995 году астрономы наблюдали это событие, в гамма-обсерватории Комптона по сути, «заглянув в прошлое». Теперь астрономы использовали свет, исходящий от древнего взрыва, для обнаружения черной дыры промежуточной массы (IMBH), которую трудно обнаружить.

Свет, исходящий от гамма-всплеска, позволил команде исследователей использовать явление, называемое гравитационным линзированием, чтобы найти промежуточную черную дыру.

Чтобы определить, какой тип объекта вызывает это линзирование, команде пришлось определить его массу. И оказалось, что масса объекта находится в диапазоне массы ПЧД.

Стоит отметить, что данная находка, так же может раскрыть информацию о формировании СМЧД.

Это открытие подтверждает существование ЧДПМ, поскольку их настолько сложно обнаружить, что некоторые ученые задаются вопросом, реальны ли они вообще.

После этого был задействован космический телескоп Хаббл, который получил изображения с высоким разрешением подтверждающие то, что рентгеновские лучи исходят не из нашей галактики, а из плотного звездного скопления на окраине другой галактики — именно в таком месте, которое астрономы ожидали найти объекты такого класса.

Эти объекты особенно сложно обнаружить, «потому что они меньше и менее активны, чем сверхмассивные черные дыры; у них нет простых и доступных источников топлива, нет такого сильного гравитационного притяжения, чтобы притягивать звезды и другой космический материал, который мог бы показываться в рентгеновском диапазоне».

По сути, астрономы должны ловить IMBH с поличным, когда они поглощают звезду.

И на этот раз ученым повезло, так как рентгеновское свечение разорванной звезды позволило астрономам не только обнаружить, но и оценить массу черной дыры в 50 000 солнечных масс. Масса ПЧД была оценена как по рентгеновской светимости, так и по форме спектра. Это намного надежнее, чем использование только рентгеновского излучения, как это обычно делалось ранее для предыдущих кандидатов в ПЧД.

А теперь перейдем к главному исследованию данного ролика

Три миллиарда лет назад во Вселенной произошел гамма-всплеск (GRB 950830). В 1995 году астрономы наблюдали это событие, в гамма-обсерватории Комптона по сути, «заглянув в прошлое». Теперь астрономы использовали свет, исходящий от древнего взрыва, для обнаружения черной дыры промежуточной массы (IMBH), которую трудно обнаружить.

Свет, исходящий от гамма-всплеска, позволил команде исследователей использовать явление, называемое гравитационным линзированием, чтобы найти промежуточную черную дыру.

Гравитационное линзирование — это явление, которое возникает, когда объект (например, черная дыра) действует как линза, искажая свет, исходящий от удаленного источника света (например, космического взрыва). Это искажение сигнализирует астрономам, что на пути должен быть массивный объект.

Чтобы определить, какой тип объекта вызывает это линзирование, команде пришлось определить его массу. И оказалось, что масса объекта находится в диапазоне массы ПЧД. Ученые также смогли отсеять других кандидатов, такие как шаровые скопления за недостаточную плотность и ореолы темной материи, так как эти в свою очередь недостаточно компактны, чтобы вызвать гравитационное линзирование.

С большей долей вероятности, с помощью данного метода можно сказать, что все-таки они существуют, черные дыры промежуточных масс.

Стоит отметить, что данная находка, так же может раскрыть информацию о формировании СМЧД.

В настоящее время ученые все еще не установили целостную картину образования сверхмассивных чёрных дыр, вырастающих до таких огромных масс, находящихся на границе возраста Вселенной. Но по предположениям им просто не должно хватить материала и времени, даже сначала времен, чтобы стать таких размеров.

И ученые надеются, что в этом им помогут ЧДПМ.

«Если существует начальная популяция черных дыр средних размеров, она может заполнять этот пробел. Но тут возникает другой вопрос. Откуда появились ЧДПМ . они могут образоваться в результате слияния / коллапса массивных одних из первых звезд в ранней Вселенной, или они могут быть более древними, первобытными черными дырами, образовавшимися на самых первых фазах Вселенной»

Это открытие подтверждает существование ЧДПМ, поскольку их настолько сложно обнаружить, что некоторые ученые задаются вопросом, реальны ли они вообще.

Оцените статью