Управление физической памятью windows

Управление памятью в Windows

Структура адресного пространства

Принято считать, что каждый процесс, запущенный в Windows, получает в свое распоряжение виртуальное адресное пространство размером 4 Гб. Это число определяется разрядностью адресов в командах: 2 32 байт = 4 Гб.

Конечно, трудно рассчитывать, что для каждого процесса найдется такое количество физической памяти, речь идет только о диапазоне возможных адресов.

Но даже и в этом смысле процессу доступно лишь около 2 Гб младших адресов виртуальной памяти. В частности, для Windows NT старшие 2 Гб с адресами от 8000000016 до FFFFFFFF16 доступны только системе. Такое решение позволило уменьшить время, затрачиваемое при вызове системных функций, поскольку отпадает необходимость изменять при этом отображение страниц, нужно только разрешить их использование. Однако, чтобы сам вызов API-функций был возможен, системные библиотеки, которые содержат эти функции, размещаются в младшей, пользовательской половине виртуального пространства.

В Windows 95 принято хулиганское решение: система и здесь располагается в старшей половине памяти, но эта половина доступна процессу пользователя и для чтения, и для записи. При этом вызов системы становится еще проще, но зато система становится беззащитной перед любой некорректной программой, лезущей куда не надо.

Кроме старших 2 Гб, процессу недоступны еще некоторые небольшие области в начале и в конце виртуального пространства. В Windows NT недоступны адреса с 0000000016 по 0000FFFF16 и с 7FFF000016 по 7FFFFFFF16, т.е. два кусочка по 64 Кб. Это сделано с целью выявления такой типичной ошибки программирования, как использование неинициализированных указателей, которые обычно попадают в запретные диапазоны адресов.

Для 64-разрядных процессоров размер виртуального адресного пространства возрастает до трудно представимых 2 64 байт (17 миллиардов гигабайт, если угодно), однако Windows XP выделяет в распоряжение каждого процесса «всего лишь» 7152 гигабайта с адресами от 0 до 6FBFFFFFFFF16, а остальное адресное пространство может использоваться только системой.

Регионы

Рассмотрим теперь, каким образом программа процесса может использовать свое адресное пространство.

Попытка просто-напросто использовать в программе произвольно выбранный адрес в пределах адресного пространства процесса, скорее всего, приведет к выдаче сообщения об ошибке защиты памяти. На самом деле, использовать виртуальный адрес можно только после того, как ему поставлен в соответствие адрес физический. Такое сопоставление выполняется путем выделения регионов виртуальной памяти.

Регион памяти всегда имеет размеры, кратные 4 Кб (т.е. он содержит целое число страниц), а его начальный адрес кратен 64 Кб.

Для выделения региона используется функция VirtualAlloc. Она требует указания следующих параметров.

· Начальный виртуальный адрес региона. Если указана константа NULL, то система сама выбирает адрес. Если указан адрес, не кратный 64 К, то система округляет его вниз.

· Размер региона. При необходимости система округляет его до величины, кратной 4 Кб.

· Тип выделения. Здесь указывается одна из констант MEM_RESERVE (резервирование памяти) или MEM_COMMIT (передача физической памяти), смысл которых будет подробно рассмотрен ниже, или комбинация обеих констант.

· Тип доступа. Он определяет, какие операции могут выполняться со страницами выделенной памяти. Наиболее важны следующие типы доступа.

— PAGE_READONLY – доступ только для чтения, попытка записи в память приводит к ошибке.

— PAGE_READWRITE – доступ для чтения и записи.

— PAGE_GUARD – дополнительный флаг «охраны страниц», который должен комбинироваться с одним из предыдущих. При первой же попытке доступа к охраняемой странице генерируется прерывание, извещающее об этом систему. При этом флаг охраны автоматически снимается, так что дальнейшая работа со страницей выполняется без проблем.

Самое важное, что следует понять про выделение регионов, это смысл операций резервирования и передачи памяти.

Резервирование региона памяти (MEM_RESERVE) означает всего лишь то, что диапазон виртуальных адресов, соответствующих данному региону, не будет использован ни под какие другие цели, система считает его занятым. Это как резервирование авиабилета: вы пока что не владеете билетом, но и никому другому его не продадут.

Попытка программы обратиться к адресу в зарезервированном, но не переданном регионе приведет к ошибке.

Передача физической памяти (MEM_COMMIT) означает, что за каждой страницей виртуальной памяти региона система закрепляет… нет, вовсе не страницу физической памяти, как можно подумать. Закрепляется блок размером 4 Кб в страничном файле. В таблице страниц процесса переданные страницы помечаются как отсутствующие в памяти.

Теперь попытка обращения к адресу в регионе приведет уже к совсем другому результату. Поскольку страница отсутствует в памяти, произойдет прерывание. Однако это не будет рассматриваться как ошибка в программе. Система, обрабатывая прерывание, выполнит операцию чтения страницы с диска, из страничного файла, в основную память и занесет в таблицу страниц физический адрес, который теперь соответствует виртуальной странице. После этого команда, вызвавшая прерывание, будет повторена, но теперь уже с успехом, поскольку требуемая страница находится в памяти. Дальнейшие обращения к той же виртуальной странице будут выполняться без проблем, пока страница находится в памяти.

Читайте также:  Пишет windows не удается связаться с устройством или ресурсом

Резервирование и передача памяти могут выполняться одновременно, при одном обращении к функции VirtualAlloc, которой для этого нужно передать комбинацию обеих констант: MEM_RESERVE + MEM_COMMIT. Есть и другой вариант: сначала зарезервировать регион памяти, а затем, по мере необходимости, передавать физическую память либо всему региону сразу, либо его отдельным частям (субрегионам). Для этого в первый раз функция VirtualAlloc вызывается с константой MEM_RESERVE и, как правило, без указания конкретного адреса. Затем вызывается VirtualAlloc с константой MEM_COMMIT и с указанием адреса ранее зарезервированного региона или соответствующего субрегиона.

Все описанное полностью соответствует понятию загрузки страниц по требованию, описанному в п. 5.5. В качестве особенностей реализации замещения страниц в Windows следует отметить следующее.

· Для каждого процесса в системе определены максимальный и минимальный размер его рабочего множества. При выборе вытесняемой страницы система пытается добиться, чтобы за каждым процессом сохранялось не менее минимального, но не более максимального количества памяти. Это позволяет избежать ситуации, когда один процесс, расточительно использующий память, вытесняет из нее почти все страницы других процессов. Процесс может изменить размеры своего рабочего множества, но при этом суммарные требования всех процессов ограничиваются реальным размером имеющейся памяти.

· Процесс может запереть в памяти некоторый диапазон адресов, чтобы воспрепятствовать вытеснению соответствующих страниц на диск. Суммарный размер памяти, запертой одним процессом, по умолчанию не должен превосходить 30 страниц. Длительное удержание одним процессом большого числа страниц запертыми в памяти привело бы к уменьшению объема памяти, доступного для других процессов (да и для незапертых страниц того же процесса).

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Управление памятью в операционной системе

С понятием управления паметью в ОС связаны следующие технологии:

  • Функции управления памятью в ОС
  • Типы адресов
  • Методы распределения памяти в ОС
  • Принцип кэширования данных в ОС

Содержание

Функции управления памятью в ОС

Операционная система решает следующие задачи:

  • Отслеживание свободной и занятой памяти.
  • Выделение и освобождение памяти по запросам процессов.
  • Обеспечение настройки адресов.
  • Поддержка механизма виртуальной памяти

Типы адресов

Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса.

Символьные имена

Символьные имена присваивает пользователь при написании программы.

Виртуальные адреса

Виртуальные адреса вырабатывает компилятор. Так как не известно, в какое место оперативной памяти будет загружена программа, то компилятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство.

Физические адреса

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами.

В первом случае замену виртуальных адресов на физические делает специальная системная программа — перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной компилятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический.

Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае — каждый раз при обращении по данному адресу.

Иногда (обычно в специализированных системах) заранее точно известно, в какой области оперативной памяти будет выполняться программа, и компилятор выдает исполняемый код сразу в физических адресах.

Методы распределения памяти в ОС

Выделяют следующие методы распределения памяти:

Управление ОЗУ, виртуальной памятью, подкачками страниц и памятью в Windows

Исходная версия продукта: Windows 7 Пакет обновления 1, Windows Server 2012 R2
Исходный номер КБ: 2160852

Читайте также:  Драйвер для hp deskjet f2400 series для windows 10

Аннотация

В этой статье содержатся основные сведения о реализации виртуальной памяти в 32-битных версиях Windows.

В современных операционных системах, таких как Windows, приложения и многие системные процессы всегда ссылались на память с помощью адресов виртуальной памяти. Виртуальные адреса памяти автоматически преобразуются оборудованием в реальные (ОЗУ) адреса. Только основные части ядра операционной системы обходят этот перевод адресов и напрямую используют реальные адреса памяти.

Виртуальная память всегда используется, даже если объем памяти, требуемой для всех запущенных процессов, не превышает объем оперативной памяти, установленной в системе.

Процессы и адресные пространства

Всем процессам (например, исполняемым приложениям), работающим под 32-битными версиями Windows, назначены адреса виртуальной памяти (виртуальное адресное пространство), в диапазоне от 0 до 4 294 967 295 (2*32-1 = 4 ГБ), независимо от того, какой объем ОЗУ установлен на компьютере.

В конфигурации Windows по умолчанию 2 гигабайта (ГБ) этого виртуального адресного пространства предназначены для частного использования каждого процесса, а остальные 2 ГБ совместно используются всеми процессами и операционной системой. Как правило, приложения (например, Блокнот, Word, Excel и Acrobat Reader) используют только часть 2 ГБ частного адресного пространства. Операционная система назначает кадры страниц ОЗУ только используемым страницам виртуальной памяти.

Расширение физического адреса (PAE) — это функция 32-битной архитектуры Intel, которая расширяет адрес физической памяти (ОЗУ) до 36 битов. PAE не меняет размер виртуального адресного пространства (который остается на уровне 4 ГБ), а только объем фактической оперативной памяти, который может быть решен процессором.

Перевод между 32-битным адресом виртуальной памяти, используемым кодом, который работает в процессе, и 36-битным ОЗУ-адресом автоматически и прозрачно обрабатывается оборудованием компьютера в соответствии с таблицами перевода, которые поддерживаются операционной системой. Любая виртуальная страница памяти (32-битный адрес) может быть связана с любой физической страницей ОЗУ (36-битным адресом).

В следующем списке описывается, сколько ОЗУ поддерживается различными версиями и выпусками Windows (в мае 2010 г.):

Версия Windows ОЗУ
Windows NT 4.0 4 ГБ
Windows 2000 Professional 4 ГБ
Windows 2000 Standard Server 4 ГБ
Windows 2000 Advanced Server 8 ГБ
Windows 2000 Datacenter Server 32 ГБ
Windows XP Professional 4 ГБ
Windows Server 2003 Web Edition 2 ГБ
Windows Server 2003 Standard Edition 4 ГБ
Windows Server 2003 Enterprise Edition 32 ГБ
Windows Server 2003 Datacenter Edition 64 ГБ
Windows Vista 4 ГБ
Windows Server 2008 Standard 4 ГБ
Windows Server 2008 Enterprise 64 ГБ
Windows Server 2008 Datacenter 64 ГБ
Windows 7 4 ГБ

Файл подкачки

ОЗУ — это ограниченный ресурс, тогда как в большинстве практических целей виртуальная память не ограничена. Может быть много процессов, каждый из которых имеет собственное 2 ГБ частного виртуального адресного пространства. Если память, используемая всеми существующими процессами, превышает объем доступной оперативной памяти, операционная система перемещает страницы (4 КБ) одного или более виртуальных адресных пространств на жесткий диск компьютера. Это освободит кадр ОЗУ для других видов использования. В системах Windows эти страницы с страницами хранятся в одном или Pagefile.sys файлах в корне раздела. В каждом разделе диска может быть один такой файл. Расположение и размер файла страницы настраиваются в свойствах системы (нажмите кнопку «Дополнительные»,«Производительность» и нажмите кнопку «Параметры»).

Пользователи часто задают вопрос о том, насколько большим должен быть этот pagefile? На этот вопрос не существует одного ответа, так как он зависит от объема установленной оперативной памяти и объема виртуальной памяти, требуемой для рабочей нагрузки. Если других сведений нет, то в качестве отправной точки является обычная рекомендация в 1,5 раза больше установленной оперативной памяти. В серверных системах обычно необходимо иметь достаточный объем оперативной памяти, чтобы не было нехватки и не использовался pagefile. В этих системах не может быть полезного предназначения для обслуживания большого pagefile. С другой стороны, если место на диске достаточно, то сохранение большого размера (например, в 1,5 раза больше установленного ОЗУ) не вызывает проблем, а также избавляет от необходимости беспокоиться о том, насколько большим будет размер ОЗУ.

Производительность, ограничения архитектуры и ОЗУ

В любой компьютерной системе по мере увеличения нагрузки (количества пользователей, объема работы) производительность снижается, но нелинейно. Любое увеличение нагрузки или спроса после определенного момента приводит к существенному снижению производительности. Это означает, что некоторым ресурсам не хватает ресурсов и они стали узким местом.

В определенный момент не удается увеличить ресурс, который находится в нехватке. Это означает, что достигнут предел архитектуры. Ниже lyly reported architectural limits in Windows include the following:

  • 2 ГБ общего виртуального адресного пространства для системы (ядро)
  • 2 ГБ частного виртуального адресного пространства на процесс (режим пользователя)
  • 660 МБ системного хранилища PTE (Windows Server 2003 и более ранних версиях)
  • 470 МБ хранилища пула страниц (Windows Server 2003 и более ранних версиях)
  • 256 МБ невыгваряемого хранилища пула (Windows Server 2003 и более ранние версии)

Это относится в частности к Windows Server 2003, но также может применяться к Windows XP и Windows 2000. Однако в Windows Vista, Windows Server 2008 и Windows 7 не все эти архитектурные ограничения имеются. Ограничения на объем памяти пользователя и ядра (здесь цифры 1 и 2) одинаковы, но ресурсы ядра, такие как PTES и различные пулы памяти, являются динамическими. Эта новая функция позволяет использовать как страницную, так и невыгежную память. Это также позволяет PTES и пулу сеансов увеличиваться за пределы, которые были рассмотрены ранее, до того момента, когда все ядро исчерпано.

Часто найденные и кавычках:

На сервере терминалов до использования 4 ГБ ОЗУ будет использоваться 2 ГБ общего адресного пространства.

В некоторых случаях это может быть верно. Однако необходимо отслеживать систему, чтобы узнать, применимы ли они к конкретной системе. В некоторых случаях эти заявления являются выводами определенных Windows NT 4.0 или Windows 2000 и не обязательно применимы к Windows Server 2003. В Windows Server 2003 были внесены значительные изменения, чтобы снизить вероятность того, что эти архитектурные ограничения будут фактически достигнуто на практике. Например, некоторые процессы, которые находились в ядре, были перемещены в процессы без ядра, чтобы уменьшить объем памяти, используемый в общем виртуальном адресной области.

Мониторинг использования ОЗУ и виртуальной памяти

Системный монитор — это инструмент, который позволяет отслеживать производительность системы и определять местоположение узкого места. Чтобы запустить монитор производительности, нажмите кнопку «Начните», выберите «Панель управления»,«Администрирование» и дважды щелкните «Монитор производительности». Вот сводка по некоторым важным счетчикам и их сведениям:

Память, зафиксированные вбайтах: этот счетчик является показателем потребности в виртуальной памяти.

Здесь показано, сколько бытов было выделено процессами и на что операционная система зафиксирует кадр страницы ОЗУ или слот страницы в этом окле (или, возможно, и то, и другое). По мере того как размер фиксных данных превышает объем доступной оперативной памяти, увеличивается размер подкачка, а используемый размер подкачка также увеличивается. В определенный момент действия по разгонам начинают значительно влиять на производительность.

Процесс, рабочий набор, _Total: этот счетчик является показателем активного использования виртуальной памяти.

Этот счетчик показывает, сколько ОЗУ требуется для того, чтобы виртуальная память, используемая для всех процессов, была в оперативной памяти. Это значение всегда является кратным 4096, что является размером страницы, используемой в Windows. Так как потребность в виртуальной памяти выходит за пределы доступной оперативной памяти, операционная система настраивает объем виртуальной памяти процесса в рабочем наборе, чтобы оптимизировать доступное использование ОЗУ и свести к минимуму разгибание по сети.

Файл подкачка, используемый %pagefile: этот счетчик является показателем того, какая часть файла страниц фактически используется.

Этот счетчик используется для определения размера подкачка. Если этот счетчик достигает 100, то подкачка заполнена, и все будет работать. В зависимости от настояния рабочей нагрузки, возможно, необходимо, чтобы размер подкачка был достаточно большим, чтобы он использовался не более 50–075 процентов. Если используется большая часть подкачка, наличие более одного на разных физических дисках может повысить производительность.

Память, страницы/с: этот счетчик является одной из наиболее распространенных мер.

Высокое значение этого счетчика не обязательно означает, что узкое место производительности связано с нехваткой ОЗУ. Операционная система использует систему подкачки для других целей, кроме замены страниц из-за чрезмерного обязательства памяти.

Память, выходные данные страниц/с: этот счетчик показывает, сколько страниц виртуальной памяти было записано на страницу, чтобы освободить кадры страниц ОЗУ для других целей каждую секунду.

Это лучший счетчик для отслеживания, если вы подозреваете, что разгон является узким местом производительности. Даже если количество зафиксированных данных больше установленного ОЗУ, если в большинстве периодов времени значение выходных данных страниц в секунду низкое или нулевое, проблем с производительностью недостаточного объема ОЗУ не возникает.

Память, кэш-память, невыгкупаемая память пула, память, количество на странице пула, память, общее количество системных кодов, память, общее количествобайтов системного драйвера:

Сумма этих счетчиков является показателем того, сколько из 2 ГБ общей части виртуального адресного пространства размером 4 ГБ фактически используется. Используйте их, чтобы определить, достигает ли ваша система одного из ограничений архитектуры, которые были рассмотрены ранее.

Память, доступное МБайт: этот счетчик измеряет объем ОЗУ, доступный для удовлетворения требований к виртуальной памяти (либо для новых выделений, либо для восстановления страницы из подкачка).

Если ОЗУ не хватает (например, «Зафиксированные», больше установленного ОЗУ), операционная система попытается сохранить определенную часть установленной оперативной памяти доступной для немедленного использования путем копирования страниц виртуальной памяти, которые не используются в активном режиме, на этот подкачка. Таким образом, этот счетчик не достигает нуля и не обязательно является хорошим показателем того, не хватает ли системе ОЗУ.

Читайте также:  Windows не присваивает букву жесткому диску
Оцените статью