Виртуальная память linux что это

Глава 5. Управление памятью

Этот раздел описывает основы управления памятью в Linux, виртуальную память и дисковый кэш-буфер. Описано все, что администратор системы должен учесть при настройке.

Что такое виртуальная память?

Linux поддерживает виртуальную память, то есть использует диск как расширение оперативной памяти так, чтобы эффективный размер пригодной для использования памяти был больше размера памяти, реально установленной в системе. Ядро пишет содержимое блока памяти, неиспользуемого в настоящее время на жесткий диск так, чтобы память могла использоваться для другой цели. Когда первоначальное содержание понадобится снова, оно будет считано обратно в память. Этот механизм сделано полностью прозрачным для пользователя; программы, запущенные под Linux, видят только большой доступный объем памяти, и не обращают внимания на то, что их части время от времени оказываются на диске. Конечно, чтение и запись жесткого диска медленнее, чем использование реальной памяти, так что программы не выполняются как быстро. Часть жесткого диска, который используется как виртуальная память, называется свопом.

Linux может использовать нормальный файл в любой файловой системе или отдельном разделе для свопа. Раздел для свопа быстрее, но проще изменить размер файла подкачки (нет никакой потребности к перераспределению целого жесткого диска и, возможно, устанавке всего с нуля). Когда Вы знаете, сколько места для свопа Вам надо, Вы должны использовать раздел для свопа, но если Вы не уверенные, лучше сначала использовать файл подкачки сначала, поработать с системой некоторое время, чтобы Вы могли получить представление о том, сколько места Вам нужно, и затем, когда вы будете уверены относительно размера, создать раздел для свопа.

Вы должны также знать, что Linux позволяет использовать несколько разделов и/или файлов подкачки в одно и то же время. Это означает, что, если Вы только иногда нуждаетесь в большом количестве виртуальной памяти, Вы можете устанавливать дополнительный файл подкачки в таких случаях, вместо того, чтобы хранить такой файл постоянно.

Примечание относительно терминологии операционной системы: информатика обычно различает между подкачкой (запись целого процесса, чтобы менять свободное место) и листание (запись только частей фиксированного размера, обычно несколько килобайт, одновременно). Листание обычно более эффективно, и именно его Linux и использует, но традиционно терминология в Linux употребляет все же термин подкачки.

Источник

Файл подкачки Linux

Сегодня мы будем говорить о файле подкачки в Linux. Расскажем для чего он нужен, как создать, изменить размер или удалить. В общем, все, что вам может понадобиться при работе со swap .

В операционной системе Linux, как и в других ОС, файл подкачки нужен для страховки оперативной памяти. Когда установленный объем ОЗУ заканчивается, используется именно выделенная область из файла подкачки. Это может понадобиться в двух случаях:

  • Для того чтобы при полной занятости и, как следствие, отсутствия свободной оперативной памяти, компьютер не тормозил.
  • Для распределения приоритетов (важным процессам отдается физическая оперативная память, а второстепенным файл подкачки Linux).

Сам по себе swap — это отдельный логический раздел вашего диска либо просто файл на системном разделе. Чаще всего он создается именно при установке операционной системы. Но создать swap linux можно и после завершения инсталляции ОС.

В последних версиях операционной системы Ubuntu Linux файл подкачки создается автоматически вне зависимости от того, хотите вы этого или нет. При этом его размер составляет около 1 Гб.

Как посмотреть swap в Linux

Прежде чем приступить к процессу добавления, настройки или удаление файла подкачки , необходимо проверить его наличие. Для этого проще всего использовать приведенную ниже команду. В нашем случае она выглядит так:

Используемая команда отображает размер файла подкачки вашей операционной системы. Однако, по ее результатам мы не можем определить – это файл подкачки или раздел подкачки. Поэтому будем использовать дополнительный другую команду, чтобы посмотреть swap linux. Вводим в терминал следующее:

Как видите, в нашем случае под swap выделено 1.4 Гб и это файл. То есть, он находится не на отдельном разделе, а на том же диске, на котором установлена операционная система.

Если это будет отдельный логический том, то под надписью « TYPE » мы увидим слово «partition».

Если бы файл подкачки в вашей операционной системе отсутствовал, результат работы команды free — h выглядел бы примерно так:

То есть, вместо каких-либо данных о файле подкачки вы увидите нули.

Создание файла подкачки Linux

Если вы удостоверились в том, что файл подкачки отсутствует, можно переходить к его созданию. Пример, приведенный ниже, будет показан с использованием операционной системы Ubuntu 18.04, но работать это должно и на других дистрибутивах Linux.

Шаг 1: Создаем swap файл

Давайте создадим файл подкачки для нашей Ubuntu. Для примера его размер составит 1 Гб. Запустите терминал и введите команду, приведенную ниже:

sudo fallocate -l 1G /swapfile

Для обеспечения безопасности файла обязательно устанавливаем на него нужные права.

sudo chmod 600 /swapfile

При этом вместо «swapfile» мы можем указать любое другое название.

Шаг 2: Создание файловой системы

Создание swap linux ещё не завершено. Теперь необходимо указать нашей операционной системе, что созданный объект должен использоваться как файл подкачки. Для этого мы будем использовать команду, приведенную ниже:

sudo mkswap /swapfile

Если все сделано верно, результат будет выглядеть так:

Шаг 3: Активируем файл подкачки

Хорошо, теперь наш Linux понимает, что это файл подкачки, но этого недостаточно. Нам также необходимо включить SWAP :

sudo swapon /swapfile

Давайте проверим, все ли мы сделали правильно:

Отлично, операционная система распознала наш файл подкачки и начала его использовать. Мы видим тип в поле TYPE и размер в поле SIZE .

Шаг 4. Сохранение изменений после перезагрузки

Все операции, которые мы предприняли выше, временны. Как только компьютер будет перезагружен, они отменятся. Для того чтобы сделать изменения постоянными, нам необходимо дописать кое-какую информацию в /etc/fstab. Для этого поступаем так:

Читайте также:  Как вернуть нормальный пуск windows 10

Прежде чем начать работать с файлом, о котором мы говорим, необходимо обязательно создать его резервную копию:

sudo cp /etc/fstab /etc/fstab.back

После этого можно переходить непосредственно к добавлению нужных нам данных. Нам надо добавить в файл такую строчку:

/swapfile none swap sw 0 0

Это реализуется через текстовый редактор, запущенный с правами суперпользователя, либо при помощи введенной в терминал команды:

echo ‘/swapfile none swap sw 0 0’ | sudo tee -a /etc/fstab

Готово. Изменения сохранены и файл подкачки не сбросится после перезагрузки операционной системы.

Настройка swappiness

Дальше будет рассмотрена настройка swap linux. У файла подкачки существуют параметры, которые сообщают ОС, как часто его нужно использовать. Это явление называется «свопингом» и может иметь значение в пределах 0 — 100. Если это значение ближе к 100, ядро будет перемещать в раздел подкачки больше информации чтобы освободить память. При значениях ближе к нулю, система будет использовать подкачку только при крайней необходимости.

К примеру, в версии Ubuntu L inux для рабочего стола устанавливается параметр 60, а в серверных редакциях операционной системы — 1. Для того чтобы проверить, какой параметр используется в нашей ОС, вводим в терминал такую команду:

Как видите, в нашем случае «свопинг» установлен как 60. Если же вы хотите поменять swappiness, можете воспользоваться оператором, цифра в конце которого и будет новым значением:

sudo sysctl vm.swappiness=25

Как и в случае с конфигурацией файла подкачки, данный параметр изначально будет временным и обнулится при следующей перезагрузке. Для того чтобы сделать его постоянным, в самом конце файла /etc/sysctl.conf записываем значение vm.swappiness=25.

Для этого можно воспользоваться, например, текстовым редактором, запущенным с администраторскими полномочиями.

Размер swap файла в Linux

Существует сразу несколько вариантов, позволяющих увеличить файл подкачки linux или уменьшить его. Однако, прежде чем их рассмотреть, необходимо напомнить об одном очень важном моменте:

Когда вы полностью отключаете файл подкачки, ваша операционная система использует только ОЗУ и в случае ее нехватки это может привести к полной остановке работы компьютера. Система просто зависнет.

Для того чтобы этого не произошло, в тот момент, когда мы удаляем или изменяем основной файл подкачки, необходимо создать второй, временный swap. Если вы это сделали или уверены в том, что имеющейся оперативной памяти хватит, можно переходить непосредственно к процессу изменения размера файла подкачки. Для этого давайте сначала отключим его:

sudo swapoff /swapfile

Вторым этапом меняем размер файла подкачки, воспользовавшись командой, приведенной ниже. При этом размер вашего swap файла нужно указать вместо параметра 2G (2 гигабайта):

sudo fallocate -l 2G /swapfile

Теперь форматируем полученный файл в файловую систему swap:

sudo mkswap /swapfile

А затем включаем его обратно:

sudo swapon /swapfile

При этом операционная система Linux позволяет использовать сразу несколько swap.

Как удалить файл подкачки в Linux

Если по каким-то причинам файл подкачки вам не нужен, можете удалить его. Для этого сначала надо отключить swap linux:

sudo swapoff /swapfile

А потом удаляем:

sudo rm /swapfile

Не забудьте установить права на вновь созданный файл подкачки так, как мы описывали это выше.

В заключение

Надеемся теперь концепция файла подкачки в Linux ясна вам на 100%. Можете переходить к практике и проверять наличие swap на вашем компьютере или ноутбуке, его настройке, созданию или даже удалению. Если в результате у вас останутся какие-то вопросы, предложения или замечания, можете задать их нам, воспользовавшись формой комментирования ниже.

Нет похожих записей

Оцените статью:

Об авторе

14 комментариев

>> В последних версиях операционной системы Ubuntu Linux файл подкачки создается автоматически вне зависимости от того, хотите вы этого или нет. При этом его размер составляет около 1 Гб.

Конечно же это не так!

Есть приедложение: вставляй скриншоты именно тех окон, которые необходимы по ходу статьи а не ввесь скриншот твоего рабочего стола, для лучшей читабельности скриншота.

Вообще, автор несколько недоговаривает насчет свапа в GNU/Linux (вероятно, ввиду незнания). Дело в том, что свап нужен не столько для срочного получения памяти, сколько для ровного и эффективного высвобождения памяти. Использовать его в качестве «срочной памяти» в общем случае очень вредно.

И отключение swap не спасает от проблемы дискового ввода/вывода при конкуренции за память — дисковый I/O просто перемещается с анонимных страниц на файловые. Это не только может быть менее эффективным, поскольку остаётся меньший пул страниц, доступных для высвобождения, но и само по себе может способствовать появлению этой высокой конкуренции.

И включение свопа тоже не спасает от заполнения озу дисковым кэшем. На разных дистрибутивах периодически сталкиваюсь с одной и той же проблемой. ОЗУ забивается дисковым кэшем и система начинает тормозить, при том что своп есть, активен, но он не используется. Опытным путем пришел к выводу что система начинает юзать своп отталкиваясь не от параметра в графе «свободно», а от параметра в графе «доступно». Я не знаю верный ли вывод сделал, но со стороны все выглядит именно так. Имею на борту 8 гб ОЗУ. Во время работы системы постепенно дисковый кэш начинает увеличиваться в размере и занимает около 6гб, при этом под реальные нужды используется всего 1,5гб, в графе «свободно» указано около 500мб, в графе доступно около 6,5гб. Стоит только запустить какую-нибудь задачу, которая потребляет озу хотя бы 1,5 -3 гб (игра), как система идёт в штопор, количество свободной памяти уменьшается до минимума прописанного в ядре — 65мб, потом начинает высвобождаться дисковый кэш, но он его просто дропает, а не пишет в своп. Причем дропает примерно до размера чтобы в графе «свободно» было 150-180мб. И после этого система начинает балансировать на этих 180 мб. Всё, естественно, становится дерганным и лагучим. Своп по прежнему не используется. Опытным путем выяснено что своп начинает использоваться тогда, когда в графе «доступно» появляется значение сопоставимое с выставленным параметром swappiness. Мне интересно, так задумано или это баг?
Приходилось устанавливать минимальное количество свободной озу на 500мб вместо 65. Подбирать swappiness в соответствии с нуждами. Но сам по себе своппинг, тоже по сути зло. В момент доступа к диску все равно наблюдались микрофризы, хотя своп находится на ссд. Решением стала настройка и уменьшение дискового кэша. Конечно, это имеет и свою отрицательную сторону, но тут, как говорится, из двух зол выбирай меньшее.

Источник

Память процесса Linux

Еще одним ресурсом, подлежащим распределению между процессами, является оперативная память. В Linux, как и во многих других современных операционных системах, для управления памятью используют механизм страничного отображения, реализуемого ядром операционной системы при помощи устройства управления памятью — W:[MMU]. При этом процессы работают с виртуальными адресами (virtual address) «воображаемой» памяти, отображаемыми устройством MMU на физические адреса (physical address) настоящей оперативной памяти.

Читайте также:  This windows are dirty

Для отображения вся оперативная память (RAM) условно разбивается на «гранулы» — страничные кадры размером в 4 Кбайт, которые затем выделяются процессам. Таким образом, память процесса условно состоит из страниц (page), которым в специальных таблицах страниц (page table) сопоставлены выделенные страничные кадры (page frame).

При выполнении процесса преобразование его виртуальных адресов в физические выполняется устройством MMU «на лету» при помощи его. индивидуальной таблицы страниц.

Именно механизм страничного отображения позволяет эффективно распределять память между процессами путем размещения страниц процессов в произвольные свободные страничные кадры. Кроме этого, механизм страничного отображения позволяет выделять процессам память по требованию, добавляя дополнительные страницы и отображая их на свободные страничные кадры. Аналогично, ненужные процессу страницы могут быть удалены, а соответствующие страничные кадры высвобождены для использования другими процессами.

Виртуальная память

Помимо задачи распределения памяти между процессами, механизм страничного отображения используется ядром операционной системы и для решения задачи нехватки оперативной памяти. При определенных обстоятельствах имеющиеся в распоряжении свободные страничные кадры оперативной памяти могут быть исчерпаны. Одновременно с этим оказывается, что большую часть времени процессы используют лишь малую часть выделенной им памяти, а находясь в состоянии сна, не используют память вовсе.

Увеличить коэффициент полезного использования памяти позволяет еще одна простая идея — высвобождать страничные кадры при помощи выгрузки (page out) неиспользуемых страниц процессов во вторичную память (в специальную область «подкачки» SWAP, например, на диске), а при обращении к выгруженной странице — загружать (page in) ее обратно перед использованием.

За счет такого страничного обмена (paging или page swapping) организуется W:[виртуальная память], т. е. видимость большего количества (оперативной) памяти для размещения процессов, чем есть на самом деле.

В примере из листинга ниже в столбцах VSZ и RSS вывода команды ps показано потребление памяти процессами (в килобайтах). В столбце VSZ (virtual size) указывается суммарный объем всех страниц процесса (в том числе и выгруженных), а в столбце RSS (resident set size) — суммарный объем всех его страничных кадров в оперативной памяти, т. е. ее реальное потребление процессом.

Виртуальная и резидентная память процесса

$ ps fu
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
fitz 18690 0.0 0.0 10308 5432 pts/1 Ss 20:51 0:00 bash
fitz 19393 2.8 1.7 609744 143316 pts/1 Sl 21:27 0:11 \_ /usr/…/firefox
fitz 19526 0.0 0.0 6104 700 pts/1 R+ 21:33 0:00 \_ ps fu

Отображение файлов в память

Страничный обмен, помимо организации виртуальной памяти, имеет еще одно важнейшее применение. Именно на его основе реализуется незаменимый механизм отображения файлов в память процесса, доступный при помощи системных вызовов mmap/munmap (и дополнительных mlock, mprotect, msync, madvise и др.).

Для отображения файла в память процесса ему выделяют страницы в необходимом количестве, но не страничные кадры. Вместо этого, в таблице страниц формируются такие записи, как будто эти страницы уже были выгружены ранее в отображаемый файл.

При последующем обращении (on demand) процесса к какой-либо странице отображенной памяти, под нее выделяют страничный кадр и заполняют (read) соответствующим содержимым файла. Любые последующие изменения, сделанные процессом в отображенных страницах, сохраняются обратно (write back) в файл, если отображение выполнено «разделяемым» (shared) способом. Для страниц, отображенных «частным» (private) способом, используется принцип COW (copy-on-write), согласно которому любые попытки их изменения (write) приводят к созданию их копий (сору), куда и попадают изменения.

Таким образом, страницы отображенного файла, которые никогда не были востребованы процессом, не будут вовсе занимать оперативной памяти. Это обстоятельство широко используется для «загрузки» в процесс его программы и библиотек. В листинге ниже при помощи команды pmap показана карта (отображения файлов) памяти процесса командного интерпретатора bash.

Карта памяти процесса

$ ps fu
PID TTY STAT TIME COMMAND
26958 pts/0 Ss 0:00 bash
28540 pts/0 R+ 0:00 \_ ps f
[email protected]:

$ which bash

$ readelf -l /bin/bash

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0X000000 0X08048000 0x08048000 0xdb0c8 0xdb0c8 R E 0x1000
LOAD 0x0dbf04 0x08124f04 0x08124f04 0x04870 0x09820 RW 0x1000
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
GNU_RELRO 0x0dbf04 0x08124f04 0x08124f04 0x000fc 0x000fc R 0 0x1
[email protected]:

$ pmap -d 26958

26958: bash
Address Kbytes Mode Offset Device Mapping
08048000 880 r-x— 0000000000000000 0fc:00000 bash
08124000 4 r—- 00000000000db000 0fc:00000 bash
08125000 20 rw— 00000000000dc000 0fc:00000 bash
0812a000 20 rw— 0000000000000000 000:00000 [ anon ]
086b9000 3676 rw— 0000000000000000 000:00000 [ anon ]
b753be000 1676 r-x— 0000000000000000 0fc:00000 libc-2.15.so
b76de000 8 r—- 00000000001a3000 0fc:00000 libc-2.15.so
b76e0000 4 rw— 00000000001a5000 0fc:00000 libc-2.15.so
b76e1000 16 rw— 0000000000000000 000:00000 [ anon ]
bfe78000 132 rw— 0000000000000000 000:00000 [ stack ]
mapped: 10312K writeable/private: 3908K shared: 240K

В память процесса интерпретатора отображен исполняемый ELF-файл его программы и ELF-файлы всех библиотек, от которых она зависит. Отображение ELF-файлов выполняется частями — сегментами (при помощи readelf можно получить их список), в зависимости от их назначения. Так, например, сегмент программного кода отображен в страницы, доступные на чтение r и выполнение x, сегмент данных отображен в страницы, доступные на чтение r и запись w, и т. д.

Более того, выделение страниц памяти по требованию в процессе работы процесса реализуется при помощи «воображаемого» отображения некоторого несуществующего, «анонимного файла» [anon] на страничные кадры. Необходимо отметить, что механизм виртуальной памяти при освобождении неиспользуемых страниц выгружает в специальную область подкачки SWAP только «анонимные» страничные кадры и «анонимизированные», полученные копированием при изменении (согласно принципу COW).

Неанонимные измененные кадры выгружаются непосредственно в соответствующие им файлы, а неизмененные освобождаются вовсе без выгрузки, т. к. уже «заранее выгружены».

В примере из листинга ниже иллюстрируются два способа выделения памяти по требованию: явный — при помощи системного вызова mmap с аргументом MAP_ANONYMOUS, и неявный (Доставшийся в наследство от классической ОС UNIX) — при помощи системного вызова brk. Явный способ позволяет выделять новые сегменты памяти процесса, тогда как неявный способ изменяет размер предопределенного «сегмента данных» процесса, позволяя увеличивать и уменьшать его по желанию, перемещая так называемый «break» — адрес конца этого сегмента.

Системные вызовы mmap/munmap и brk— выделение и высвобождение памяти

$ ldd hostname

Читайте также:  Как обновить сборку windows 10 до 1909

libnsl.so.1 => /lib/i386-linux /llb/i386-linux-gnu/libc.so.6 (0xb7526000)

/lib/ld-linux. so.2 (0xb770a000)

$ strace hostname

execve(«/bin/hostname», [«hostname»], [/* 43 vans */]) = 0

access(«/etc/ld.,so.nohwcap», F_OK) = -1 ENOENT (No such file or directory)

mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYNOMOUS, -1, 0) = 0xb770e000

access( «/etc/ld. so. preload», R_OK) = -1 ENOENT (No such file or directory)

open(«/etc/ld.so.cache», O_RDONLY|O_CLOEXEC) = 3

mmap2(NULL, 122191, PROT_READ, MAP_PRIVATE, 3, 0) = 0bdo76f000

access(«/etc/ld.so.nowcap», F_OK) = -1 ENOENT (No such Ale or directory)

open(«/lib/1386-linux 6, base_addr:0xb752b6c0, limit: 1048575, seg_32bit:1, contents: 0, read_exec_only: 0, limit_in_pages: 1, seg_not_present: 0, useable: 1>) = 0

mprotect(oxb76d0000, 8192, PROT_READ) = 0

mprotect(0xb76eo000, 4096, PROT_READ) = 0

mprobect(0x804b000, 4096, PROT_READ) = 0

mprotect(0xb7731000, 4096, PROT_READ) = 0

munmap(0xb76f0000, 122101) = = 0 ↑ /lib/ld-linux.so.2

brk(0) = 0x9e62000 ↓ /bin/hostname

mmap2(NULL, 4096, PROT_READ| PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb770d000 wrlte(1, «ubuntu\n», 7ubuntu

Трасса команды hostname, показанная в листинге выше, поясняет работу загрузчика и компоновщика, (loader, ld) динамических библиотек ld-linux.

Системный вызов exec отображает для запуска в память процесса не только заданный ELF-файл /bin/hostname, но и (указанный в этом ELF-файле) загрузчик библиотек /lib/ld-linux.so.2, которому и передается управление до самой программы.

Загрузчик библиотек, в свою очередь, отображает в процесс , свой «конфигурационный» файл /etc/ld.so.cache, а затем посегментно отображает файлы всех библиотек и выделяет им требуемую дополнительную память.

Загруженные библиотеки присоединяются (линкуются или же компонуются, linking), к программе /bin/hostname, после чего страницам их отображенных сегментов назначается ©Ф соответствующий режим доступа системным вызовом mprotect. По завершении компоновки отображение конифгурационного файла /etc/ld.so.cache снимается при помощи munmap, а управление передается исходной программе.

Потребление памяти

Суммарное распределение страниц памяти по сегментам процесса можно получить при помощи третьего набора столбцов (активировав его клавишами № команды top, как показано в листинге ниже. В столбце VIRT изображается суммарный объем (в килобайтах) всех страниц процесса, а в столбце RES — объем резидентных «страниц (находящихся в страничных кадрах оперативной памяти). В столбце SWAP указывается объем всех страниц, находящихся во вторичной памяти — как «анонимных» страниц, выгруженных в специальную область подкачки, так и «файловых» страниц, возможно, никогда не загружавшихся в оперативную память.

Столбцы CODE и DATA показывают объемы (в килобайтах) памяти,, выделенной, под сегменты кода и данных, а столбец SHR — объем резидентных страниц, которые используются (или могут быть использованы) совместно с другими процессами.

Распределение памяти по назначению

$ top -р 26958
top — 11:05:01 up 15 days, 47 min, 8 users, load average: 0.27, 0.51, 0.51

Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie

Cpu(s): 8.6%us, 2.4%sy, 0.0%ni, 88.6%id, 0.4%wa, 0.0%hi, 0.0%si, 0.0%si

Mem: 8192144k total, 7037720k used, 1154424k free, 238984k buffers

Swap: 4104188k total, 35376k used, 4068812k free, 4356372k cached

PID %МЕМ VIRT SWAP RES CODE DATA SHR nFLT nDRT S PR NI %CPU COMMAND

26958 0.1 10288 4936 5352 880 3852 1544 0 0 S 20 0 0 bash

Механизм отображения считывает содержимое файла в страничные кадры только один раз, вне зависимости от количества процессов, отображающих этот файл в свою память. В случае отображения одного файла разными процессами их страницы совместно отображаются на одни и те же страничные кадры, за исключением страниц, скопированных (согласно принципу COW) при изменении.

Такое поведение механизма отображения позволяет эффективно использовать оперативную память за счет использования разными программами одинаковых разделяемых библиотек. Так как ELF-файлы библиотек «загружаются* в память процессов при помощи отображения mmap, то в результате каждая библиотека размещается в оперативной памяти лишь единожды, вне зависимости от количества ее «использований».

Интегральная статистика по использованию виртуальной памяти может быть получена при помощи команды free, как показано в листинге ниже.

Статистика использования памяти

$ free -m
total used free shared buffers cached
Mem: 8000 5523 2476 0 219 3430
-/+ buffers/cache: 1873 6126
Swap: 4007 17 3990

Строка Mem: содержит статистику использования оперативной памяти, а строка Swap: — статистику специальной области подкачки. В столбце total указан суммарный объем всех доступных страничных кадров, а в столбцах used и free — суммарные объемы использованных и свободных страничных кадров, соответственно.

В столбце cached указан объем страничного кэша (page cache), т. е. суммарный объем страничных кадров оперативной памяти, использованных под отображение файлов в память. Аналогично, в столбце buffers указывается объем буферного кэша, т. е. суммарный объем памяти, использованной ядром для кэширования «не-отображаемых» сущностей: метаданных файлов, дисковых блоков при прямом вводе-выводе на устройства и пр.

В столбцах used и free строки -/+ buffers/cache указываются объемы использованной и свободной памяти «за вычетом» страничного и буферного кэшей, т. е. «чистая» память, выделенная процессам по требованию под данные, сгенерированные в процессе работы.

В листинге ниже показан пример потребления памяти процессом текстового редактора vi при попытке редактирования громадного файла в 1 Гбайт. Процесс загружает файл целиком, в результате чего он целиком оказывается в резидентных страницах сегмента данных процесса, что естественным образом увеличивает «чистый» расход оперативной памяти системы. После принудительного завершения процесса при помощи команды kill память естественным образом высвобождается.

Потребление памяти процессами

pts/0

$ dd if=/dev/urandom of=big bs=4069 count=262144

262144+0 записей получено

262144+0 записей отправлено

скопировано 1073741824 байта (1,1 GВ), 148,956 с, 7,2 МВ/с

$ ls -lh big

-rw-r—r— 1 fitz fttz 1,0G дек. 3 12:26 big

$ free -m
total used free shared buffers cached
Mem: 8000 3947 4052 0 42 2712
-/+ buffers/cache: 1192 6807
Swap: 4007 0 4007

$ vi big

pts/1

$ ps f

PID TTY STAT TIME COMMAND
20595 pts/1 S 0:00 -bash
21087 pts/1 R+ 0:00 \_ ps f
20437 pts/0 S 0:00 -bash
21085 pts/0 Rl+ 0:08 \_ vi big

$ ps up 21685
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
fitz 21085 96.4 21.8 1826416 1786444 pts/0 Sl+ 21:14 0:18 vi big

$ free -m

total used free shared buffers cached

Mem: 8000 5687 2312 0 42 2709
-/+ buffers/cache: 2935 5065
Swap: 4007 0 4007

$ top -b -n1 -p 21085

top — 21:14:43 up 3:56, 3 users, load average: 0.53, 0.40, 0.47

Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie

Cpu(s): 6.0%us, 5.89%sy, 0.2%ni, 83.7%id, 4.3%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 8192144k total, 5826856k used, 2365288k free, 43932k buffers

Swap: 4104188k total, 0k used, 4104188k free, 2777504k cached

PID %МЕМ VIRT SWAP RES CODE DATA SHR nFLT nDRT S PR NI %CPU COMMAND

21085 21.8 1783m 39m 1.7g 2148 1.7g 5676 0 0 S 20 0 0 vi

$ kill 21085

$ free -m

total used free shared buffers cached

Mem: 8000 3945 4054 0 42 2709
-/+ buffers/cache: 1193 6806
Swap: 4007 0 4007

Источник

Оцените статью