What are jumbo frames windows

Что такое Jumbo Frames и нужно ли их включать в небольшой сети

Постоянно спотыкаюсь и что-то забываю, поэтому, разобравшись в очередной раз, решил вкратце записать основное, как я понял. Поправьте, если что не так.

Jumbo Frames — большие фреймы ethernet-сети (не путать с пакетами TCP, например). Стандартный фрейм для Ethernet — 1500 байт, однако, к Jumbo относятся фреймы больше 1518 байт. Максимальный фрейм — 16000 байт, однако чаще используется 9000 байт, как максимум.

В чем плюсы JF: из-за того, что за один фрейм можно пробросить больше информации, возрастает скорость передачи данных по сети (но достаточно незначительно 3%-5%). Зато ощутимо падает нагрузка на CPU всех устройств, которые участвуют в приеме-передаче. Это, в свою очередь, увеличивает скорость отклика и дает возможность увеличить нагрузку на сеть.

В чем минусы JF: все устройства, участвующие в передаче, должны поддерживать фреймы размером, не меньшим, чем отправляющий сервер. Т.е. если сервер А отправляет файл серверу Б, то оба сервера и все промежуточные свичи должны Jumbo Frames поддерживать и размером не меньшим, чем отправляет сервер А. Стандартов на размеры JF никаких нет, как и нет стандартов на их обработку. Разные устройства реагируют на JF по разному, что порождает массу глюков (вплоть до обрывов связи), в связи с чем JF по умолчанию отключены, а это еще и добавляет проблем с тем, чтобы все устройства цепочки поддерживали JF. А, если в цепочке встретится неподдерживающее JF устройство, то картина производительности ухудшится, если сравнить с картиной, где ни одно устройство не пытается использовать JF. Траффик под JF тоже должен быть соответствующий, толстый, например, NFS. В интернет выкидывать больший фреймы нельзя, гарантированно найдется устройство без его поддержки. Признаком отсутствия поддержки JF является, например, рост rx_header_split на интерфейсе.

Выводы: Преимущества Jumbo Frames проявляются исключительно на гигабите и выше, они есть и значительные. Зато количество глюков, которые вы можете собрать и не сможете диагностировать просто потрясает.

Я не рекомендую использование Jumbo Frames в домашней или офисной сети, если она не гигабитная или быстрее, а так же если вы плохо себе представляете всю цепочку устройств по дороге.

Working Hard In IT

My view on IT from the trenches

Configuring Jumbo Frames with PowerShell in Windows Server 2012

During lab and test time with Windows Server 2012 Hyper-V some experimenting with PowerShell is needed to try and automate actions and settings. One of the thing we have been playing around with was how to enable and configure jumbo frames.

Many advanced features like Large Send Offload have commandlets of their own (Enable-NetAdapterLso etc.), but not all them and jumbo frames is one of the latter. For those advanced features you can use the NetAdapterAdvancedProperty commandlets (Network Adapter Cmdlets in Windows PowerShell). You can than set/enable those features via the registry keywords & values. Let’s say we want to enable jumbo frames on a virtual adapter named “ISCSI” in a VM.

To know what values to use you can run:

Get-NetAdapterAdvancedProperty -Name ISCSI

As you can see Jumbo Packet has a RegistryValue of 1514 and a DisplayValue of “Disabled”. You can also see that the RegistryKeyword to use to enable and configure jumbo frames is “*JumboPacket”. So to enable jumbo frames you run the following command:

Set-NetAdapterAdvancedProperty -Name “ISCSI” -RegistryKeyword “*JumboPacket” -Registryvalue 9014

The RegistryValue is set to 9014 and the DisplayValue is set to “9014 Bytes”, i.e. it’s enabled.

If you type in an disallowed value it will list the accepted values. Please note also that these can differ from NIC to NIC depending on what is supported. Some will only show 1514, 4088, some will show 1514, 4088, 9014.

Now to disable jumbo frames you just need to reset the RegistryValue back to 1514

Set-NetAdapterAdvancedProperty -Name “ISCSI” -RegistryKeyword “*JumboPacket” -Registryvalue 1514

The result of this command can be seen in the picture below. DisplayName Jumbo Packet has a DisplayValue of “Disabled” again.

Let’s say you want to enable jumbo frames on all network adapters in a host you can run this:

Get-NetAdapterAdvancedProperty -DisplayName “Jumbo Packet” | Set-NetAdapterAdvancedProperty –RegistryValue “9014

Set-NetAdapterAdvancedProperty -Name * -RegistryKeyword “*JumboPacket” -Registryvalue 9014

I didn’t notice much difference in speed testing this with measure-command.

If you mess things up to much and you want to return all DisplayName settings to a well known status, i.e. the defaults you can run:

Читайте также:  Включить directx 11 для windows 10

Reset-NetAdapterAdvancedProperty –Name SCSCI –DisplayName *

If you’ve just messed around with the jumbo frame settings run

Reset-NetAdapterAdvancedProperty -Name ISCSI –DisplayName “Jumbo Packet”

Or you can do the same for all network adapters:

Reset-NetAdapterAdvancedProperty –Name * –DisplayName “Jumbo Packet”

There you go, you’re well on your way doing the more advanced configurations of your network setup. Enjoy!

Всё, что вы хотели знать о Ethernet фреймах, но боялись спросить, и не зря

Статья получилась довольно объёмная, рассмотренные темы — форматы Ethenet фреймов, границы размеров L3 Payload, эволюция размеров Ethernet заголовков, Jumbo Frame, Baby-Giant, и много чего задето вскользь. Что-то вы уже встречали в обзорной литературе по сетям передачи данных, но со многим, однозначно, не сталкивались, если глубоко не занимались изысканиями.

Начнём с рассмотрения форматов заголовков Ethernet фреймов в очереди их появления на свет.

Форматы Ehternet фреймов.

1) Ethernet II


Рис. 1

Preamble – последовательность бит, по сути, не являющаяся частью ETH заголовка определяющая начало Ethernet фрейма.

DA (Destination Address) – MAC адрес назначения, может быть юникастом, мультикастом, бродкастом.

SA (Source Address) – MAC адрес отправителя. Всегда юникаст.

E-TYPE (EtherType) – Идентифицирует L3 протокол (к примеру 0x0800 – Ipv4, 0x86DD – IPv6, 0x8100- указывает что фрейм тегирован заголовком 802.1q, и т.д. Список всех EtherType — standards.ieee.org/develop/regauth/ethertype/eth.txt )

Payload – L3 пакет размером от 46 до 1500 байт

FCS (Frame Check Sequences) – 4 байтное значение CRC используемое для выявления ошибок передачи. Вычисляется отправляющей стороной, и помещается в поле FCS. Принимающая сторона вычисляет данное значение самостоятельно и сравнивает с полученным.

Данный формат был создан в сотрудничестве 3-х компаний – DEC, Intel и Xerox. В связи с этим, стандарт также носит название DIX Ethernet standard. Данная версия стандарта была опубликована в 1982г (первая версия, Ehernet I – в 1980г. Различия в версиях небольшие, формат в целом остался неизменным). В 1997г. году данный стандарт был добавлен IEEE к стандарту 802.3, и на данный момент, подавляющее большинство пакетов в Ethernet сетях инкапсулированы согласно этого стандарта.

2) Ethernet_802.3/802.2 (802.3 with LLC header)


Рис. 2

Как вы понимаете, комитет IEEE не мог смотреть спокойно, как власть, деньги и женщины буквально ускользают из рук. Поэтому, занятый более насущными проблемами, за стандартизацию технологии Ethernet взялся с некоторым опозданием (в 1980 взялись за дело, в 1983 дали миру драфт, а в 1985 сам стандарт), но большим воодушевлением. Провозгласив инновации и оптимизацию своими главными принципами, комитет выдал следующий формат фрейма, который вы можете наблюдать на Рисунке 2.

Первым делом обращаем внимание на то, что “ненужное” поле E-TYPE преобразовано в поле Length, которое указывало на количество байт следующее за этим полем и до поля FCS. Теперь, понять у кого длинее можно было уже на втором уровне системы OSI. Жить стало лучше. Жить стало веселее.

Но, указатель на тип протокола 3его уровня был нужен, и IEEE дало миру следующую инновацию — два поля по 1 байту — Source Service Access Point(SSAP) и Destination Service Access Point (DSAP). Цель, таже самая, – идентифицировать вышестоящий протокол, но какова реализация! Теперь, благодаря наличию двух полей в рамках одной сессии пакет мог передаваться между разными протоколами, либо же один и тот же протокол мог по разному называться на двух концах одной сессии. А? Каково? Где ваше Сколково?

Замечание: В жизни же это мало пригодилось и SSAP/DSAP значения обычно совпадают. К примеру SAP для IP – 6, для STP — 42 (полный список значений — standards.ieee.org/develop/regauth/llc/public.html)

Не давая себе передышки, в IEEE зарезервировали по 1 биту в SSAP и DSAP. В SSAP под указание command или response пакета, в DSAP под указание группового или индивидуального адреса (см. Рис. 6). В Ethernet сетях эти вещи распространения не получили, но количество бит в полях SAP сократилось до 7, что оставило лишь 128 возможных номера под указание вышестоящего протокола. Запоминаем этот факт, к нему мы ещё вернёмся.

Было уже сложно остановиться в своём стремлении сделать лучший формат фрейма на земле, и в IEEE фрейм формате появляется 1 байтное поле Control. Отвечающее, не много, не мало, за Connection-less или же Connection-oriented соединение!

Выдохнув и осмотрев своё детище, в IEEE решили взять паузу.

Замечание: Рассматриваемые 3 поля — DSAP, SNAP и Control и являются LLC заголовком.

3) «Raw» 802.3


Рис. 3

Данный «недостандарт» явил в мир Novell. Это были лихие 80-ые, все выживали, как могли, и Novell не был исключением. Заполучив ещё в процессе разработки спецификации стандарта 802.3/802.2, и лёгким движением руки выкинув LLC заголовок, в Novell получили вполне себе неплохой фрейм формат (с возможность измерения длины на втором уровне!), но одним существенным недостатком – отсутствием возможности указания вышестоящего протокола. Но, как вы уже могли догадаться, работали там ребята не глупые, и по здравому размышлению выработали решение – «а обратим ка мы свои недостатки в свои же достоинства», и ограничили этот фрейм-формат исключительно IPX протоколом, который сами же и поддерживали. И задумка хорошая, и план был стратегически верный, но, как показала история, не фортануло.

Читайте также:  Стандартный проигрыватель windows media player
4) 802.3 with SNAP Header.

Время шло. В комитет IEEE приходило осознание того, что номера протоколов и деньги кончаются. Благодарные пользователи засыпали редакцию письмами, где 3-х байтный LLC заголовок ставился в один ряд с такими великими инновациями человечества, как оборудование собаки 5ой ногой, или же с рукавом, который можно использовать для оптимизации женской анатомии. Выжидать дальше было нельзя, настало время заявить о себе миру повторно.


Рис. 4

И в помощь страждущим от нехватки номеров протоколов (их всего могло быть 128 – мы упоминали), IEEE вводит новый стандарт фрейма Ethernet SNAP (Рис. 4). Основное нововведение — добавление 5-ти байтного поля Subnetwork Access Protocol (SNAP), которое в свою очередь состоит из двух частей – 3х байтного поля Organizationally Unique Identifier (OUI) и 2х байтного Protocol ID (PID) — Рис. 5.


Рис. 5

OUI или же vendor code – позволяет идентифицировать пропиетарные протоколы указанием вендора. К примеру, если вы отловите WireShark`ом пакет PVST+, то в поле OUI увидите код 0x00000c, который является идентификатором Cisco Systems (Рис. 6).


Рис. 6

Замечание: Встретить пакет с инкапсуляцией в формат фрейма 802.3 SNAP довольно легко и сейчас – это все протоколы семейства STP, протоколы CDP, VTP, DTP.

Поле PID это, по сути, то же поле EtherType из DIX Ethernet II — 2 байта под указание протокола вышестоящего уровня. Так как ранее, для этого использовались DSAP и SSAP поля LLC заголовка, то для указания того, что тип вышестоящего протокола нужно смотреть в поле SNAP, поля DSAP и SSAP принимают фиксированное значение 0xAA (также видно на Рис. 6)

Замечание: При использовании для переноса IP пакетов формата фрейма LLC/SNAP, IP MTU снижается с 1500 до 1497 и 1492 байт соответственно.

По заголовкам в формате фрейма в принципе всё. Хотел бы обратить внимание на ещё один момент в формате фрейма – размер payload. Откуда взялся этот диапазон — от 46 до 1500 байт?

Размер L3 Payload.

Откуда взялось нижнее ограничение, знает, пожалуй, каждый, кто хотя бы читал первый курикулум CCNA. Данное ограничение является следствием ограничения в размер фрейма в 64 байта (64 байта – 14 байт L2 заголовок — 4 байта FCS = 46 байт ) накладываемого методом CSMA/CD – время требуемое на передачу 64 байт сетевым интерфейсом является необходимым и достаточным для определения коллизии в среде Ethernet.
Замечание: В современных сетях, где возникновение коллизий исключено, данное ограничение уже не актуально, но требование сохраняется. Это не единственный «аппендикс» оставшийся с тех времен, но о них поговорим в другой статье.

А вот откуда взялись эти пресловутые 1500 байт, вопрос сложнее. Я нашел следующее объяснение — предпосылок на введение верхнего ограничения размера фрейма было несколько:

  • Задержка при передаче – чем больше фрейм, тем дольше длится передача. Для ранних сетей, где Collision домен не ограничивался портом, и все станции должны были ждать завершения передачи, это было серьёзной проблемой.
  • Чем больше фрейм, тем больше вероятность того что фрейм при передаче будет поврежден, что приведет к необходимости повторной передачи, и все устройства в collision домене будут вынуждены опять ожидать.
  • Ограничения, накладываемые памятью используемой под интерфейс буферы – на тот момент (1979г) увеличение буферов значительно удорожало стоимость интерфейса.
  • Ограничение, вносимое полем Length/Type – в стандарте закреплено, что все значения выше 1536 (от 05-DD до 05-FF.) указывают на EtherType, соответственно длина должна быть меньше 05-DC. (У меня правда есть подозрение, что это скорее следствие, чем предпосылка, но вроде инфа от разработчиков стандарта 802.3)

Итого, в стандарте 802.3 размер фрейма ограничивался 1518 байтами сверху, а payload 1500 байтами (отсюда и дефолтный размер MTU для Ethernet интерфейса).

Замечание: Фреймы меньше 64 байт называются Runts, фреймы больше 1518 байт называются Giants. Просмотреть кол-во таких фреймов полученных на интерфейсе можно командой show interface gigabitEthernet module/number и show interface gigabitEthernet module/number counters errors. Причём до IOS 12.1(19) в счётчики шли как фреймы с неверным, так и верным CRS (хотя вторые не всегда дропались – зависит от платформы и условий). А вот начиная с 12.1.(19) отображаются в этих счётчиках только те runt и giant фреймы, которые имеют неверный CRS, фреймы меньше 64 байт, но с верным CRS (причина возникновения обычно связана с детегированием 802.1Q или источником фреймов, а не проблемами физического уровня) с этой версии попадают в счётчик Undersize, дропаются они, или же форвардятся дальше, зависит от платформы.

Читайте также:  Скриншот отдельной части экрана windows
Эволюция размеров Ethernet заголовков.

С развитием технологий и спецификаций линейки IEEE 802 претерпевал изменения и размер фрейма. Основные дальнейшее изменения размера фрейма (не MTU!):

  • 802.3AC — увеличивает максимальный размер фрейма до 1522 – добавляется Q-tag – несущий информацию о 802.1Q (VLAN tag) и 802.1p (биты под COS)
  • 802.1AD — увеличивает максимальный размер фрейма до 1526, поддержка QinQ
  • 802.1AH (MIM) – Provider Bridge Backbone Mac in Mac + 30 байт к размеру фрейма
  • MPLS – увеличиваем размер фрейма на стек меток 1518 + n*4, где n – количество меток в стеке.
  • 802.1AE – Mac Security, к стандартным полям добавляются поля Security Tag и Message Authentication Code + 68 байт к размеру фрейма.

Все эти фреймы увеличенного размера группируются под одни именем – Baby-Giant frames. Негласное верхнее ограничение по размерам для Baby-Giant – это 1600 байт. Современные сетевые интерфейсы будут форвардить эти фреймы, зачастую, даже без изменения значения HW MTU.

Отдельно обратим внимание на спецификации 802.3AS — увеличивает максимальный размер фрейма до 2000 (но сохраняет размер MTU в 1500 байт!). Увеличение приходится на заголовок и трейлер. Изначально увеличение планировалось на 128 байт – для нативной поддержки стандартом 802.3 вышеперечисленных расширений, но в итоге сошлись на 2х тысячах, видимо, чтобы два раза не собираться (или как говорят в IEEE – this frame size will support encapsulation requirements of the foreseeable future). Стандарт утвержден в 2006 году, но кроме как на презентациях IEEE, я его не встречал. Если у кого есть что добавить здесь (и не только здесь) – добро пожаловать в комменты. В целом тенденция увеличения размера фрейма при сохранении размера PAYLOAD, порождает у меня в голове смутные сомнения в правильности выбранного направления движения.

Замечание: Немного в стороне от перечисленного обосновался FCoE фрейм – размер фрейма до 2500 байт, зачастую, эти фреймы называются mini-jumbo. Для их саппорта необходимо включать поддержку jumbo-frame.

И последний «бастард» Ethernet это Jumbo Frame (хотя если перевести Jumbo, то вырисовывается скорее Ходор – отсылка к Game of Thrones). Под это описание попадают все фреймы превосходящие размером стандарт в 1518 байт, за исключением рассмотренных выше. Jumbo пакеты никак не отражены в спецификациях 802.3 и поэтому реализация остаётся на совести каждого конкретного вендора. Тем не менее, Jumbo фреймы существуют столько же, сколько существует Ethernet. Определено это следующим:

  1. Выгода соотношения Payload к заголовкам. Чем больше это соотношение, тем эффективней мы можем использовать линии связи. Конечно здесь разрыв будет не такой как в сравнении с использованием пакетов в 64 байт и 1518 байт для TCP сессий. Но свои 3-8 процентов, в зависимости от типа трафика выиграть можно.
  2. Значительно меньшее количество заголовков генерирует меньшую нагрузку на Forwading Engine, также и на сервисные Engine. К примеру, frame rate для 10G линка загруженного фреймами по 1500 байт равен 812 744 фреймов в секунду, а тот же линк загруженный Jumbo фреймами в 9000 байт генерирует фрейм рейт всего лишь в 138 587 фрейм в секунду. На рисунке 7 приведены график из отчёта Alteon Networks (ссылка будет внизу статьи) утилизации CPU и гигабитного линка, в зависимости от типа используемого размера фрейма.
  3. Увеличение TCP Throughput при изменении размера MTU — staff.psc.edu/rreddy/networking/mtu.html


Рис. 7

Есть у этой медали и обратная сторона:

  1. Чем больше фрейм, тем дольше он будет передаваться (Рис. 8):
  2. Буферы в памяти сетевых устройств заполняются быстрее, что может вызвать нежелательные последствия. По сути, решаемо на стадии проектирования оборудования, но увеличивает стоимость.
  3. Проприетарная реализация у каждого производителя – все устройства должны поддерживать или одинаковые размеры Jumbo фрейма, или же наборы размеров.
  4. Использование на больших участках сети находящихся под разным административным контролем, по сути, невозможно, из-за отсутствия механизма Jumbo Frame Discovery – промежуточный узел может не поддерживать Jumbo Frame совсем или определенный размер.


Рис.8

В сумме, плюсы и минусы использования Jumbo фреймов дают нам недвусмысленное указание, где мы можем использовать такой размер фрейма. И так, в каких же приложениях в датацентре мы можем использовать Jumbo Frame к всеобщей выгоде? Выходит такой примерно список (дополнения приветствуются):

  • В серверных кластерах
  • При бэкапировании
  • Network File System (NFS) Protocol
  • iSCSI SANs
  • FCoE SANs

Замечание: Верхнее ограничение размера есть и у Jumbo MTU. Оно определяется размером поля FCS (4 байт) и алгоритмом Cyclic Redundancy Check и равняется 11 455 байт. На практике же, Jumbo MTU обычно ограничен размером в 9216 байт, на некоторых платформах в 9000 байт, на более старом железе в 8092 байт (речь о Cisco).

Фух, в принципе всё. Что хотел рассмотреть по теории, рассмотрели. По конфигурации размеров MTU и теории с финтами стоящими за этими тремя буквами, прошу в мою прошлую статью – «Maximum Transmission Unit (MTU). Мифы и рифы».

Оцените статью