- LTSP: Терминальный сервер на Linux
- Принцип работы
- Плюсы и минусы
- Устройство
- Как устроена загрузка по сети?
- Установка
- DHCP-сервер:
- Установка ПО
- Создание пользователей
- Конфиг lts.conf
- Итоги
- Разворачиваем и демонизируем ASP.NET Core приложение под Linux в виде фонового сервиса
- Подготовка окружения
- Создание приложения
LTSP: Терминальный сервер на Linux
Сейчас я расскажу вам о том, как можно сэкономить немалое количество времени и денег на вашей IT-инфраструктуре.
Как централизованно админить большое количество linux рабочих станций не разводя при этом хаос в вашей экосистеме.
И так, что же такое LTSP?
LTSP — Это терминальное решение на Linux.
Говоря «терминальное», я в первую очередь имею в виду не подключение к удаленному рабочему столу как в Windows. Я подразумеваю гораздо более гибкую и продвинутую систему доставки ПО, конфигов, домашенего каталога, да и самой операционной системы на клиентские рабочие станции с вашего терминального сервера.
В частности, LTSP — это совокупность преднастроенных программ и скриптов которые позволят вам без особого труда превратить вашу свежеустановленную Ubuntu, или другой дистрибутив, в полностью готовое к работе терминальное окружение. Которое будет загружаться на любых компьютерах в вашей сети и предоставлять пользователю полноценный интерфейс.
У LTSP есть несколько режимов работы:
Для того, чтобы понять в чем различие для начала нам нужно разобраться как LTSP работает.
Принцип работы
Допустим, у вас есть сервер и множество компьютеров (терминальных станций), которые вы раздаете пользователям, чтобы те за ними работали. Терминальные станции эти почти ничем не отличаются от обычных компьютеров, за исключением того, что их размеры обычно достаточно малы, для работы им не нужен жесткий диск и, кроме того, они могут быть довольно слабыми и дешевыми, на работе пользователей это не отражается (в режиме тонкого клиента). Стоит отметить, что в роли терминальной станции может выступать любой компьютер, который умеет загружаться по сети.
Как я уже сказал, на терминальных станциях вполне может и не быть жесткого диска, а соответственно никакой операционной системы на них не установленно, вся загрузка происходит c LTSP-сервера прямо по сети.
На терминальном сервере у вас установлена система, в ней же и хранятся все данные пользователей, конфиги, и ПО.
Когда пользователь включает свой компьютер, у него загружается операционная система с терминально сервера, он может в нее войти, поработать, отключиться. При этом все данные всегда остаются на терминальном сервере.
Теперь о режимах работы:
- тонкий клиент — Приложения выполняются на терминальном сервере и просто выводятся на дисплей терминального клиента.
- толстый клиент — Приложения выполняются непосредственно на терминальном клиенте, а сервер просто предоставляет доступ к пользовательским файлам и программам.
Итак, какой же режим нам выбрать? — все зависит от того, что вы хотите получить. Вы можете немного сэкономить используя на клиентах слабые станции вкупе с мощным сервером в режиме тонких клиентов. Или разгрузить терминальный сервер и локальную сеть, купив терминальные станции помощнее, переложив ответсвенность за выполнение программ на клиентов, заставив их, тем самым, работать в режиме толстого клиента.
Кроме того, режимы можно комбинировать и некоторые приложения можно заставлять работать иначе, чем все остальные. Например запускать «тяжелый» браузер с flash локально на клиентах, а офисные приложения запускать на самом сервере.
Плюсы и минусы
Давайте рассмотрим какие же плюсы мы имеем по сравнению со стандартными принципами построения ит инфраструктуры:
- Централизованное управление — У вас есть одна единая конфигурация, которой вы управляете из одного места.
- Резервирование и бэкапирование — Все пользовательские данные у вас хранятся на одном сервере, а соотвественно настроив резервирование этого сервера, вы никогда не потеряете пользовательские данные.
- Экономия на компьютерах — Бездисковые терминальные станции стоят заметно дешевле, чем полноценные компьютеры.
- Быстрое развертывание — Вам больше не нужно устанавливать ОС. Прикупив очередную пачку терминалов их можно смело втыкать в сеть, они сразу подтянут операционку с сервера и они будут полностью готовы к работе. Точно так же нерабочий терминал можно быстро заменить другим.
- Независимость от рабочего места — Пользователи могут работать под своей учетной записью независимо с любого компьютера в сети, всегда будет подгружаться именно их личный профиль.
- OpenSource — Прежде всего, LTSP — это открытый и свободный проект. Вам не надо покупать лицензии для его использования. Кроме того, вы всегда можете посмотреть исходники, в основе которых лежат обычные bash-скрипты.
- Требуется непрерывное подключение LAN — терминальные станции грузятся и работают по сети, поэтому требуется стабильное проводное подключение к сети.
- Зависимость от сервера — понятное дело, без сервера все терминальные клиенты становятся бесполезными и превращяются в тыкву.
Устройство
Первое, что мы должны знать, это компоненты из которых состоит сервер:
- DHCP-сервер — используется для выдачи клиентам IP-адресов и информации о tftp-сервере и пути к загрузчику pxelinux. Вы так же можете использовать ваш собственный DHCP-сервер.
- TFTP-сервер — отдает по tftp-протоколу загрузчик, ядро и главный конфиг lts.conf .
- NBD-сервер — используется ядром для загрузки базовой системы по сети. Так же, при желании, может быть заменен на NFS
- SSH-сервер — используется для авторизации пользователей и передачи их домашних каталогов на терминальные станции.
Во вторых разберемся в том как он работает:
Когда вы установите на ваш сервер пакет ltsp-server-standalone , вы, к полностью настроенным сервисам, получите еще несколько ltsp-скриптов:
- ltsp-build-client — собирает для нас образ системы, который мы будем отдавать на клиентские машины.
- ltsp-chroot — chroot’ит нас в клиентскую систему, например для установки дополнительных пакетов и изменения конфигов.
- ltsp-config — генерит дефолтные конфиги для LTSP.
- ltsp-info — выводит информацию о текущей установке.
- ltsp-update-image — обновляет nbd-образ базовой системы.
- ltsp-update-kernels — копирует ядро и загрузчик из клиентского образа, в директорию tftp-сервера
- ltsp-update-sshkeys — добавляет ssh publickey вашего сервера, в known_hosts клиентского образа.
Их то мы и будем использовать для настройки нашего окружения.
Как устроена загрузка по сети?
Так же предельно важно понимать как устроена загрузка по сети, процесс загрузки выглядит примерно следующим образом:
- Рабочая станция включается и опрашивает DHCP-сервер, как ей грузиться дальше:
А точнее происходит запрос двух опций: next server — адрес TFTP-сервера и boot file — путь к загрузчику. - DHCP-сервер, выдает ответ с адресом сервера и путем к pxelinux.
- Рабочая станция загружает загрузчик pxelinux по TFTP
- pxelinux загружает ядро.
В конфиге pxelinux в опциях ядра указанно откуда грузить основную систему по NBD - Когда ядро запускается, оно маунтит с сервера nbd-образ в корень системы и загружает процесс init, который в свою очередь и загружает все остальное обычным способом.
- Так же в этот момент ltsp-читает главный конфиг lts.conf с сервера и запускает LDM, после чего пользователь видит приглашение к вводу логина и пароля.
LDM — это логон менеджер LXDE, который отвечает за авторизацию пользователей и начальный запуск окружения.
Когда пользователь логинится проиходит следующее:
- В случае тонкого клиента, LDM заходит с введенным логином и паролем на ваш сервер по SSH,, если успешно, загружает окружение с сервера простым пробросом X’ов.
- В случае толстого клиента, LDM пытается подключиться с введенным логином и паролем к вашему серверу, если успешно, то маунтит домашний каталог пользователя с сервера на клиент посредством sshfs, затем запускает окружение.
Если вам нужна более подробная информация о загрузке Linux по сети, рекомендую обратиться к циклу статей Roshalsky, вот ссылка на первую.
Установка
Я опишу установку LTSP в режиме толстого клиента, как наиболее сложную и интересную.
Настройка в режиме тонкого клиента мало чем будет оличаться, за исключением того, что необходимое ПО вам придется устанавливать не в chroot, а в основную систему, и после этого вам не нужно будет пересобирать nbd-образ.
Маленькая оговорочка, для сервера лучше брать дистрибутивы посвежее, т.к. LTSP находится среди стандартных пакетов и обновляется вместе с дистрибутивом. Для гостевой ос лучше брать проверненную Ubuntu 14.04 LTS, т.к. если брать дистрибутив посвежее, потом начнутся проблемы, то загрузчик не станавливается, из-за переименования пакетов, то еще что.
UPD: Проверенно, с последней Ubuntu 16.04 LTS таких проблем не возникает.
Итак, приступим. Сначала устанавливаем ltsp-server-standalone :
Теперь с помощью ltsp-build-client мы установим клиентскую систему. LTSP поддерживает различные DE, но больше всего мне понравилось как работает LXDE. В отличии от Unity он потребляет совсем мало ресурсов и так-как работает на голых иксах, он почти полностью конфигурируется с помощью переменных среды, это очень удобно, так-как их можно указать в главном конфиге lts.conf.
Все эти опции можно указать в конфиге /etc/ltsp/ltsp-build-client.conf , что бы не прописывать их вручную:
В случае если опция не указана, будет использоваться тот же дистрибутив и/или архитектура, что и на серверной системе.
После запуска комманды, у вас в полностью автоматическом режиме, с помощью debootstrap , развернется система в каталог /opt/ltsp/i386 .
Эта же система и будет использоваться в дальнейшем всеми командами LTSP, в нее будет устанавливаться дополнительное ПО, из нее будут генериться загрузчик с ядром и nbd-образ системы. В принципе, ее, так же можно отдавать по nfs при должной настройке загрузчика.
После установки LTSP автоматически сгенерит из нее nbd-образ. Этот образ и будут загружить наши клиенты.
Для того, чтобы внести какие-нибудь изменения в гостевую ОС, например устанавливать дополнительное ПО, используется команда ltsp-chroot .
Если вы хотите что-то поменять или добавить в гостевую систему, выполните ltsp-choot и вы окажетесь внутри нее.
Затем произведите нужные вам действия, и выйдите командой exit.
Чтобы изменения применились, нужно перегенерить nbd-образ командой ltsp-update-image
DHCP-сервер:
Вместе с метапакетом ltsp-server-standalone у нас установился и isc-dhcp-server .
В принципе он уже из коробки работает как надо, но при желании вы можете поправить его конфиг /etc/default/isc-dhcp-server .
Есть классная статья на OpenNet от 2010 года на тему настройки LTSP, там неплохо описана процедура настройки DHCP-сервера.
Но, так как я предполагаю, что у вас уже есть DHCP-сервер, предлагаю настроить его.
Теперь вам нужно добавить к вашему dhcp-серверу 2 опции:
Как это сделать, смотрите инструкции к вашему DHCP-серверу.
Вот, например инструкция как это сделать на оборудовании Mikrotik.
Установка ПО
Давайте же войдем в нашу гостевую систему:
Теперь установим vim:
Поддержку русского языка:
Последнюю версию Remmina:
Браузер Chromium c плагином PepperFlash (свежий flash от google)
Кстати, PepperFlash можно установить и запустить без Chromium, в Firefox:
Еще в Ubuntu 16.04 есть некая проблема, если не настроить xscreensaver, то через определенное время клиент покажет черный экран, из которого никак не выйти. Исправим это:
Установим xscreenasver, если он еще не установлен:
Если вы намерены блокировать экран с вводом пароля, не забудьте добавить следующую строку в ваш конфиг lts.conf:
Не забываем выйти из chroot и обновить наш nbd-образ:
Создание пользователей
Обычных пользователей терминального сервера можно создать стандартным способом:
Или через GUI если он установлен у вас на сервере
Также при желании можно создать локального администратора в клиентском образе:
Конфиг lts.conf
Вот мы и подобрались к самому главному конфигу
Находится он по адресу /var/lib/tftpboot/ltsp/i386/lts.conf и представляет ссобой нечто иное как описание глобальных переменных.
Конфиг поделен на секции, в секции Default описываются настройки общие для всех клиентов:
Также можно добавить секции для отдельных клиентов, на основе hostname, IP или MAC-адреса:
Вообще полный список опций вы можете найти на этой странице, или в
Итоги
В итоге мы получаем одновременно гибкую, безопасную и простую в администрировании систему.
Мы можем стандартными методами установливать любое ПО на нее, разграничивать права пользователей, править конфиги общие и для каждого юзера по отдельности, и не бояться за потерю данных.
К тому же, благодаря свободной лицензии все это достается вам абсолютно бесплатно.
LTSP можно использовать как в учебных заведениях, так и в обычных офисах, как для удаленного подключения к Windows, так и просто для обычной работы.
UPD: widestream в комментариях отписал, что успешно использует похожую схему для создания рендер-фермы.
Не секрет, что в нынешние времена для большинства сотрудников, сейчас, будет достаточно лишь браузера с базовым набором офисных програм на рабочем месте.
Источник
Разворачиваем и демонизируем ASP.NET Core приложение под Linux в виде фонового сервиса
Подготовка окружения
Для начала, добавим dotnet-репозиторий:
На выходе получаем примерно следующее:
Теперь обновим индекс наших пакетов:
Далее, мы можем просто установить dotnet-пакет при помощи apt-get:
Теперь можем смело приступать к созданию приложения
Создание приложения
При помощи команды dotnet new мы можем создать шаблон для нашего приложения, подобно шаблонам из Visual Studio. Подробная документация к команде.
На текущий момент (07.2017), команда dotnet new поддерживает следующие шаблоны:
Мы создадим веб-приложение ASP.NET Core:
На выходе консоль выдаст нам следующее сообщение:
Чтобы убедиться, что шаблон сгенерировался правильно, заглянем в содержимое папки при помощи команды ls -la .
Все необходимые папки для сборки приложения на месте, приступим! Для начала, восстановим все пакеты при помощи dotnet restore .
Теперь можем собрать приложение:
Запустим приложение с помощью:
Консоль говорит нам, что приложение запустилось по адресу localhost:5000/. Проверим:
Желающих подробнее узнать, как работает web-сервер отсылаю к официальному источнику.
Теперь убьём процесс нажав Ctrl + C и опубликуем приложение командой dotnet publish. Эта команда упаковывает приложение и все его зависимости для дальнейшего развёртывания (желающим интимных подробностей сюда).
В случае проблем с правами доступа Вам поможет команда sudo chmod и эта страница документации.
Развертывание на сервере.
Если мы хотим развернуть наше приложение под linux-сервером, необходимо настроить прокси и демонизировать процесс запуска приложения. Для проксирования мы будем использовать nginx, для демонизации процесса systemd. Краткое описание утилиты
Как следует из документации выше, с asp.net core в коробке идет kestrel — веб-сервер для asp.net приложений. Зачем нам тогда нужен прокси-сервер? Ответ даётся на официальной странице Microsoft:
Если вы выставляете ваше приложение в интернет, Вы должны использовать IIS, Nginx или Apache как обратный прокси-сервер.
Обратный прокси-сервер получает HTTP запросы из сети и направляет их в Kestrel после первоначальной обработки, как показано на след диаграмме:
Главная причина, по которой следует использовать обратный прокси сервер — безопасность. Kestrel относительно нов и ещё не имеет полного комплекта защиты от атак.
Ещё одна причина, по которой следует использовать обратный прокси-сервер — наличие на сервере нескольких приложений, использующих один порт. Kestrel не поддерживает разделение одного порта между несколькими приложениями.
Так же, использование обратного прокси-сервера может облегчить распределение нагрузки и поддержку SSL.
Как говорилось выше, в качестве прокси-сервера мы будем использовать nginx.
Т.к. в качестве прокси-сервера у нас используется не IIS, следует добавить следующие строки в метод Configure файла Startap.cs.
Здесь мы включаем поддержку ForwardedHeaders мидлвера из пакета. Microsoft.AspNetCore.HttpOverrides, который будет вставлять в Http-запрос заголовки X-Forwarded-For и X-Forwarded-Proto, использующиеся для определения исходного IP адреса клиента и передачи его прокси-серверу. Определение мидлверов и практическое использование так же будет рассмотрено в дальнейших частях этого гайда.
Если у Вас nginx не установлен, выполните следующую команду.
и запустите его командой:
Далее, нам необходимо сконфигурировать nginx для проксирования http-запросов.
Создадим файл /etc/nginx/sites-available/aspnetcore.conf. Папка sites-avalible укахывает nginx-у, какие веб-сайты доступны на текущем сервере для обработки. Добавим в него следующие строки:
Создадим символическую ссылку на aspnetcore.conf в папку sites-enabled, в которой отражаются запущенные nginx-ом сайты.
Nginx настроен на то, чтобы принимать запросы с localhost:8888. Перезапускаем nginx командой sudo service nginx restart , чтобы созданные нами конфигурационные файлы вступили в силу. Проверяем:
502-я ошибка говорит, что сервер перенаправляет нас в другое место и в этом месте что-то пошло не так. В нашем случае — я убил процесс с нашим веб-приложением, которое было ранее запущено командой dotnet run. Потому что могу 🙂
На самом деле, потому что запускать dotnet run в консоли и вечно держать эту вкладку открытой грустно. Именно поэтому процесс будем демонизировать, то есть настроем автозапуск после перезагрузки и автоматическую работу в фоне с помощью systemd.
Для этого создадим файл в директории /etc/systemd/system/ с расширением .service
Назовём его kestrel-test:
И положим в него следующее содержимое:
[Unit]
Description=Example .NET Web API Application running on Ubuntu
[Service]
WorkingDirectory=/home/robounicorn/projects/asp.net/core/test-lesson/bin/Debug/netcoreapp1.1/publish #путь к publish папке вашего приложения
ExecStart=/usr/bin/dotnet /home/robounicorn/projects/asp.net/core/test-lesson/bin/Debug/netcoreapp1.1/publish/test-lesson.dll # путь к опубликованной dll
Restart=always
RestartSec=10 # Перезапускать сервис через 10 секунд при краше приложения
SyslogIdentifier=dotnet-example
User=root # пользователь, под которым следует запускать ваш сервис
Environment=ASPNETCORE_ENVIRONMENT=Production
Теперь включим и запустим сервис при помощи следующих команд:
Проверим статус сервиса:
Если всё было сделано правильно, на эта команда выдаст нам следующее:
Источник