What is memory buffer linux

Understanding memory information on Linux systems

Every operating system needs memory to store program code segments and data. This is also true for Linux systems. The problem: there is a lot of information available regarding memory usage and its behavior. Let’s discover how Linux manages its memory and how we can gather memory information.

After reading this guide, you will be able to:

  • Show the total amount of memory
  • Display all memory details
  • Understand the details listed in /proc/meminfo
  • Use tools like dmesg, dmidecode, free, and vmstat

Table of Contents

Linux memory information

Random access memory

When we talk about memory in this article, we usually mean random access memory (RAM). This is the memory which can be used for both showing and storing data. Typically we will find in this type of memory the programs that are running on the system, including the Linux kernel itself. Besides the program code, memory also stores a lot of data. A good example is when you are running a MySQL database server. The program itself is relatively small, the data itself is huge. So we will also have a look at tuning programs and their memory usage, as this is typically a problem with memory-hungry programs.

Determine the amount of RAM

The first step is to discover the amount of RAM we have in the system. There are a few ways on how to achieve this, starting from the data stored in dmesg .

The output may look something like this:

This information shows the number of memory available in kilobytes. The first value shows what is currently available, the second value displays the total memory in the system. These values are usually very close. This indicates that most of the memory can be used and is a good thing. The small portion “missing” is used by the initial loading of the kernel. If there is a big gap, then this might be caused by the kernel and how many memory it can allocate. Especially with 32 bits versions of Linux, this number is limited.

Details and information about RAM modules

The next step is learning more about the RAM modules itself. You will need the dmidecode utility for this, which is available for most Linux distributions. To gather memory information, tell the dmidecode to only show information for device type 17.

Depending on your hardware it may be able to extract the specifics of your modules and show detailed information. You may need to run this as root user. Normal users won’t have the right permissions to read all information.

In this output above you can see the details of the first memory module. We see it is a chip of 4 GB and configured at a 1600 MHz speed. This is a great way to determine the memory available in a Linux system, together with detailed output. Unfortunately, the command does not always play well with virtual systems.

No data is displayed on our virtual test system 🙁

Let’s move on to the next set of utilities and gather details regarding memory usage.

Available memory

After the Linux kernel is booted, it is time to start programs. The kernel itself is not responsible for the programs. Instead, it delegates this responsibility to a service manager like init or systemd. This process is the first to be started and will get process ID 1. Its duty is to start other services and programs during the lifetime of the system. Each program will consume some amount of memory, depending on the program size and the related data. Let’s have a look at some ways to see available memory on Linux and retrieving related details.

See available memory with free command

The first command to obtain available memory information is the perfectly named tool free .

This utility shows two different types of memory: normal memory and swap memory. Swap is a type of memory that you want to avoid needing as much as possible. If it would be used, then it means your normal memory is full. The system will then leverage the swap memory to temporarily store data, at the cost of disk operations. As they are much slower than normal RAM, your system will be impacted. In this screenshot, we see the swap is not used, which is good.

The free utility retrieves this memory information from a file named /proc/meminfo. Let’s have a look at that as well.

Details from /proc/meminfo

The next step to obtain everything available regarding memory is found in the procfs tree, usually mounted under /proc. This file is very extensive, so have a look at it on your system:

A partial output listing showing how memory is used

Memory management under Linux is extensive and changed over time to what it is now. This results in a delicate system that optimizes memory usage as much as possible. Let’s get into some of these fields and understand better how Linux does its job.

Cached, SwapCached

The system does a lot of repetition, including reading the same files or data. Everything that goes into memory and is no longer needed, will be kept for a little bit longer. If you then request the same data while it is in memory, you will get it almost instantly. This is what happens when you run a find command on a particular directory the first time, which usually takes a while. Run it again and it will be much quicker.

Читайте также:  Linux расшарить папку для телевизора

Active, Inactive

A page cache optimizes access to files. These buffers can be recently used (=active), or not (=inactive).

Active is the total of Active(anon) and Active(file). Similarly, Inactive is the total of Inactive(anon) + Inactive(file).

SwapTotal, SwapFree

These provide insights in the configured swap memory and how much is left. Ideally, the SwapFree value is equal to SwapTotal, meaning no swap is in use at that time. Swapping is disk intensive.

Dirty

The Dirty field refers to data that is stored in memory and still needs to be written to the disk.

You can test this easily by writing to a temporary file and compare the value before and after.

cat /proc/meminfo | grep Dirty && dd if=/dev/zero of=/tmp/testfile.txt bs=1M count=10 && cat /proc/meminfo | grep Dirty

Note: if you repeat this command, you will see the effect of smart memory management. In that case, the value before and after will most likely be the same, as some data was cached and directly returned as a finished action. You can counter this by retrieving random data from /dev/random.

Slab, SReclaimable, SUnreclaim

The kernel does a lot of repetition during the time it is running. Some objects, like asking for the specific inode of a file may be performed thousand times a day. In such case, it would be wise to store it in a quick reference list, or cache. Slab is the combination of caches for kernel objects, to optimize those activities that happen the most.

The Slab field is the total of SReclaimable and SUnreclaim.

Slab: 32272 kB
SReclaimable: 18144 kB
SUnreclaim: 14128 kB

NFS_Unstable

For systems that use NFS this is a good measurement to see how much data is not committed to the storage yet. For systems without NFS, this value can be ignored and is usually just zero.

More fields

If you compared these fields with your own system, you will discover there are more fields. Depending on your workload, you will have to discover what fields make sense to monitor. What does generally work well during troubleshooting, is comparing similar systems and check for the differences in /proc/meminfo. It may give a good indication of where memory is used and what keeps the system busy.

Using vmstat utility

Another nice utility that is often available is vmstat. With -s we can query memory statistics.

We can also query the previous mentioned slabs.

Monitoring memory usage in Linux

If you have a monitoring system in place, then two key attributes from /proc/meminfo should be monitored.

By monitoring these two values you may discover memory leaks and badly optimized systems. You may also pick up on a misbehaving process now and then.

For environments that have many similar systems with a typical workload (e.g. lots of web servers doing the same), then it would make sense to monitor more of the keys in /proc/meminfo. Storing the data a few times per day may give you the ability to compare systems and find exceptional events.

Frequently Asked Questions

How can I find out the total physical memory (RAM)?

Use the free command to show the total amount of memory and how it is assigned.

What Linux tool can I use to see the details of the memory modules?

Use the hwinfo tool to gather details regarding the memory. If that is not available, then consider using the output from dmesg.

How can I see which processes consume the most memory?

Use the ps command to show memory usage and do a reverse sort.

Why are the buffer and cache use so much memory on Linux?

Linux considers unused memory to be wasted memory. So it will use as much memory as possible to speed up the performance on the system. The related caches and buffers contain typically data related to the file system. That is also why a second run of the find command in the same directory runs much quicker. The kernel will reassign memory to processes when needed.

Where does the kernel store the details regarding virtual memory management?

Most of the related settings, like how to act during an Out-of-Memory event, will be stored in /proc/sys/vm.

Conclusion

Linux memory management is an extensive subject and there is a lot to learn. Make sure to understand the basics, like how to obtain memory information, including that of RAM and swap. This is of great help during troubleshooting and to know what programs need to do their job.

Did you learn something from this article? Great! Share it on your favorite website or with others. If you have a nice tool for memory analysis or got a question, you are welcome to use the comments!

Keep learning

So you are interested in Linux security? Join the Linux Security Expert training program, a practical and lab-based training ground. For those who want to become (or stay) a Linux security expert.

Run automated security scans and increase your defenses. Lynis is an open source security tool to perform in-depth audits. It helps with system hardening, vulnerability discovery, and compliance.

Источник

Как Linux работает с памятью. Семинар в Яндексе

Привет. Меня зовут Вячеслав Бирюков. В Яндексе я руковожу группой эксплуатации поиска. Недавно для студентов Курсов информационных технологий Яндекса я прочитал лекцию о работе с памятью в Linux. Почему именно память? Главный ответ: работа с памятью мне нравится. Кроме того, информации о ней довольно мало, а та, что есть, как правило, нерелевантна, потому что эта часть ядра Linux меняется достаточно быстро и не успевает попасть в книги. Рассказывать я буду про архитектуру x86_64 и про Linux­-ядро версии 2.6.32. Местами будет версия ядра 3.х.

Эта лекция будет полезна не только системным администраторам, но и разработчикам программ высоконагруженных систем. Она поможет им понять, как именно происходит взаимодействие с ядром операционной системы.

Термины

Резидентная память – это тот объем памяти, который сейчас находится в оперативной памяти сервера, компьютера, ноутбука.
Анонимная память – это память без учёта файлового кеша и памяти, которая имеет файловый бэкенд на диске.
Page fault – ловушка обращения памяти. Штатный механизм при работе с виртуальной памятью.

Читайте также:  Genius widecam f100 драйвер windows

Страницы памяти

Работа с памятью организована через страницы. Объём памяти, как правило, большой, присутствует адресация, но операционной системе и железу не очень удобно работать с каждым из адресов отдельно, поэтому вся память и разбита на страницы. Размер страницы – 4 KБ. Также существуют страницы другого размера: так называемые Huge Pages размером 2 MБ и страницы размером 1 ГБ (о них мы говорить сегодня не будем).

Виртуальная память – это адресное пространство процесса. Процесс работает не с физической памятью напрямую, а с виртуальной. Такая абстракция позволяет проще писать код приложений, не думать о том, что можно случайно обратиться не на те адреса памяти или адреса другого процесса. Это упрощает разработку приложений, а также позволяет превышать размер основной оперативной памяти за счёт описанных ниже механизмов. Виртуальная память состоит из основной памяти и swap-устройства. То есть объём виртуальной памяти может быть в принципе неограниченного размера.

Для управления виртуальной памятью в системе присутствует параметр overcommit . Он следит за тем, чтобы мы не переиспользовали размер памяти. Управляется через sysctl и может быть в следующих трех значениях:

  • 0 – значение по умолчанию. В этом случае используется эвристика, которая следит за тем, чтобы мы не смогли выделить виртуальной памяти в процессе намного больше, чем есть в системе;
  • 1 – говорит о том, что мы никак не следим за объёмом выделяемой памяти. Это полезно, например, в программах для вычислений, которые выделяют большие массивы данных и работают с ними особым способом;
  • 2 – параметр, который позволяет строго ограничивать объем виртуальной памяти процесса.

Посмотреть, сколько у нас закоммичено памяти, сколько используется и сколько мы можем ещё выделить, можно в строках CommitLimit и Commited_AS из файла /proc/meminfo .

Memory Zones и NUMA

В современных системах вся виртуальная память делится на NUMA-ноды. Когда­-то у нас были компьютеры с одним процессором и одним банком памяти (memory bank). Называлась такая архитектура UMA (SMP). Всё было предельно понятно: одна системная шина для общения всех компонентов. В последствии это стало неудобно, начало ограничивать развитие архитектуры, и, как следствие, была придумана NUMA.

Как видно из слайда, у нас есть два процессора, которые общаются между собой по какому-­то каналу, и у каждого из них есть свои шины, через которые они общаются со своими банками памяти. Если мы посмотрим на картинку, то задержка от CPU 1 к RAM 1 в NUMA­-ноде будет в два раза меньше, чем от CPU 1 на RAM 2. Получить эти данные и прочую информацию мы можем, используя команду numactl ­­hardware .

Мы видим, что сервер имеет две ноды и информацию по ним (сколько в каждой ноде свободной физической памяти). Память выделяется на каждой ноде отдельно. Поэтому можно потребить всю свободную память на одной ноде, а другую — недогрузить. Чтобы такого не было (это свойственно базам данных), можно запускать процесс с командой numactl ­­interleave=all. Это позволяет распределять выделение памяти между двумя нодам равномерно. В противном случае ядро выбирает ноду, на которой был запланирован запуск этого процесса (CPU scheduling) и всегда пытается выделить память на ней.

Также память в системе поделена на Memory Zones. Каждая NUMA-­нода делится на какое­-то количество таких зон. Они служат для поддержки специального железа, которое не может общаться по всему диапазону адресов. К примеру, ZONE_DMA – это 16 MБ первых адресов, ZONE_DMA32 – это 4 ГБ. Смотрим на зоны памяти и их состояние через файл /proc/zoneinfo .

Page Cache

Через Page Cache в Linux по умолчанию идут все операции чтения и записи. Он динамического размера, то есть именно он съест всю вашу память, если она свободна. Как гласит старая шутка, если вам нужна свободная память в сервере, просто вытащите ее из сервера. Page Cache делит все файлы, которые мы читаем, на страницы (страница, как мы сказали, – 4 KБ). Посмотреть, есть ли в Page Cache какие-­то страницы какого-­то конкретного файла, можно с помощью системного вызова mincore() . Или с помощью утилиты vmtouch, которая написана с использованием этого системного вызова.

Как же происходит запись? Любая запись происходит на диск не сразу, а в Page Cache, и делается это практически моментально. Тут можно увидеть интересную «аномалию»: запись на диск идет намного быстрее, чем чтение. Дело в том, что при чтении (если данной странички файла в Page Cache нет) мы пойдем в диск и будем синхронно ждать ответа, а запись в свою очередь пройдет моментально в кеш.

Минусом такого поведения является то, что на самом деле данные никуда не записались, — они просто находятся в памяти, и когда-­то их нужно будет сбросить на диск. У каждой странички при записи проставляется флажок (он называется dirty). Такая «грязная» страничка появляется в Page Cache. Если накапливается много таких страничек, система понимает, что пора их сбросить на диск, а то можно их потерять (если внезапно пропадет питание, наши данные тоже пропадут).

Память процесса

Процесс состоит из следующих сегментов. У нас есть stack, который растет вниз; у него есть лимит дальше котрого он расти не может.

Затем идет регион mmap: там находятся все отображенные на память файлы процесса, которые мы открыли или создали через системный вызов mmap() . Далее идет большое пространство невыделенной виртуальной памяти, которую мы можем использовать. Снизу вверх растет heap – это область анонимной памяти. Внизу идут области бинарника, который мы запускаем.

Если мы говорим о памяти внутри процесса, то работать со страницами тоже неудобно: как правило, выделение памяти внутри процесса происходит блоками. Очень редко требуется выделить одну­-две странички, обычно нужно выделить сразу какой-­то промежуток страниц. Поэтому в Linux существует такое понятие, как область памяти (virtual memory area, VMA), которая описывает какое-­то пространство адресов внутри виртуального адресного пространства этого процесса. На каждую такую VMA есть свои права (чтения, записи, исполнения) и области видимости: она может быть приватная или общая (которая «шарится (share)» с другими процессами в системе).

Выделение памяти

Выделение памяти можно поделить на четыре случая: есть выделение приватной памяти и памяти, которой можем с кем-­то поделиться (share); двумя другими категорями являются разделение на анонимную память и ту, у которая связана с файлом на диске. Самые частые функции выделения памяти – это malloc и free. Если мы говорим о glibc malloc() , то он выделяет анонимную память таким интересным способом: использует heap для аллокации маленьких объемов (менее 128 KБ) и mmap() для больших объемов. Такое выделение необходимо для того, чтобы память расходовалась оптимальнее и её можно было запросто отдавать в систему. Если в heap не хватает памяти для выделения, вызывается системный вызов brk() , который расширяет границы heap. Системный вызов mmap() занимается тем, что отображает содержимое файла на адресное пространство. munmap() в свою очередь освобождает отображение. У mmap() есть флаги, которые регулируют видимость изменений и уровень доступа.

Читайте также:  Esptool прошивка esp32 linux

На самом деле, Linux не выделяет всю запрошенную память сразу. Процесс выделения памяти — Demand Paging — начинается с того, что мы запрашиваем у ядра системы страничку памяти, и она попадает в область Only Allocated. Ядро отвечает процессу: вот твоя страница памяти, ты можешь её использовать. И больше ничего происходит. Никакой физической аллокации не происходит. А произойдет она только в том случае, если мы попробуем в эту страницу произвести запись. В этот момент пойдёт обращение в Page Table – эта структура транслирует виртуальные адреса процесса в физические адреса оперативной памяти. При этом будут задействованы также два блока: MMU и TLB, как видно из рисунка. Они позволяют ускорять выделение и служат для трансляции виртуальных адресов в физические.

После того, как мы понимаем, что этой странице в Page Table ничего не соответствует, то есть нет связи с физической памятью, мы получаем Page Fault – в данном случае минорный (minor), так как отсутствует обращение в диск. После этого процесса система может производить запись в выделенную страницу памяти. Для процесса все это происходит прозрачно. А мы можем наблюдать увеличение счетчика минорных Page Fault для процесса на одну единицу. Также бывает мажорный Page Fault – в случае, когда происходит обращение в диск за содержимым страницы (в случае mmpa() ).

Один из трюков в работе с памятью в Linux – Copy On Write – позволяет делать очень быстрые порождения процессов (fork).

Работа с файлами и с памятью

Подсистема памяти и подсистема работы с файлами тесно связаны. Так как работа с диском напрямую очень медленна, ядро использует в качестве прослойки оперативную память.

malloc() использует больше памяти: происходит копирование в user space. Также потребляется больше CPU, и мы получаем больше переключений контекста, чем если бы мы работали с файлом через mmap() .

Какие выводы можно сделать? Мы можем работать с файлами, как с памятью. У нас есть lazy lоading, то есть мы можем замапить очень­-очень большой файл, и он будет подгружаться в память процесса через Page Cache только по мере надобности. Всё также происходит быстрее, потому что мы используем меньше системных вызовов и, в конце концов, это экономит память. Ещё стоит отметить, что при завершении программы память никуда не девается и остается в Page Cache.

В начале было сказано, что вся запись и чтение идут через Page Cache, но иногда по какой­-то причине, есть необходимость в отходе от такого поведения. Некоторые программные продукты работают таким способом, например MySQL с InnoDB.

Подсказать ядру, что в ближайшее время мы не будем работать с этим файлом, и заставить выгрузить страницы файла из Page Cache можно с помощью специальных системных вызовов:

  • posix_fadvide();
  • madvise();
  • mincore().

Утилита vmtouch также может вынести страницы файла из Page Cache – ключ “­e”.

Readahead

Поговорим про Readahead. Если читать файлы с диска через Page Cache каждый раз постранично, то у нас будет достаточно много Page Fault и мы будем часто ходить на диск за данными. Поэтому мы можем управлять размером Readahead: если мы прочитали первую и вторую страничку, то ядро понимает, что, скорее всего, нам нужна и третья. И так как ходить на диск дорого, мы можем прочитать немного больше заранее, загрузив файл наперёд в Page Cache и отвечать в будущем из него. Таким образом происходит замена будущих тяжёлых мажорных (major) Page Faults на минорные (minor) page fault.

Итак мы выдали всем память, все процессы довольны, и внезапно память у нас закончилась. Теперь нам нужно ее как­-то освобождать. Процесс поиска и выделения свободной памяти в ядре называется Page Reclaiming. В памяти могут находится страницы памяти, которые нельзя забирать, – залокированные страницы (locked). Помимо них есть ещё четыре категории страниц. Cтраницы ядра, которые выгружать не стоит, потому что это затормозит всю работу системы; cтраницы Swappable – это такие страницы анонимной памяти, которые никуда, кроме как в swap устройство выгрузить нельзя; Syncable Pages – те, которые могут быть синхронизированы с диском, а в случае открытого файла только на чтение – такие страницы можно с лёгкостью выбросить из памяти; и Discardable Pages – это те страницы, от которых можно просто отказаться.

Источники пополнения Free List

Если говорить упрощённо, то у ядра есть один большой Free List (на самом деле, это не так), в котором хранятся страницы памяти, которые можно выдавать процессам. Ядро пытается поддерживать размер этого списка в каком­-то не нулевом состоянии, чтобы быстро выдавать память процессам. Пополняется этот список за счёт четырех источников: Page Cache, Swap, Kernel Memory и OOM Killer.

Мы должны различать участки памяти на горячую и холодную и как­-то пополнять за счет них наши Free Lists. Page Cache устроен по принципу LRU/2 ­очереди. Есть активный список страниц (Active List) и инактивный список (Inactive List) страничек, между которыми есть какая­-то связь. В Free List прилетают запросы на выделение памяти (allocation). Система отдаёт страницы из головы этого списка, а в хвост списка попадают страницы из хвоста инактивного (inactive) списка. Новые страницы, когда мы читаем файл через Page Cache, всегда попадают в голову и проходят до конца инактивного списка, если в эти страницы не было еще хотя бы одного обращения. Если такое обращение было в любом месте инактивного списка, то страницы попадают сразу в голову активного списка и начинают двигаться в сторону его хвоста. Если же в этот момент опять к ним происходит обращение, то страницы вновь пробиваются в верх списка. Таким образом система пытается сбалансировать списки: самые горячие данные всегда находятся в Page Cache в активном списке, и Free List никогда не пополняется за их счет.

Также тут стоит отметить интересное поведение: страницы, за счет которых пополняется Free List, которые в свою очередь прилетают из инактивного списка, но до сих пор не отданные для аллокации, могут быть возвращены обратно в инактивный списка (в данном случае в голову инактивного списка).

Итого у нас получается пять таких листов: Active Anon, Inactive Anon, Active File, Inactive File, Unevictable. Такие списки создаются для каждой NUMA ноды и для каждой Memory Zone.

Источник

Оцените статью