- Windows sockets что это такое
- Windows sockets что это такое
- Понятие windows sockets приложения
- Список сокетов приложений в Windows
- Как посмотреть сокеты приложений у вас на компьютере
- Как изменить время жизни сокета
- Как узнать PID приложения
- Winsock
- Содержание
- Предыстория
- Сокеты Windows. Порты и адреса сокета Windows Sockets: Ports and Socket Addresses
- Порту Port
- Адрес сокета Socket Address
- ГЛАВА 12
- Сокеты Windows
- Инициализация Winsock
- Создание сокета
- Серверные функции сокета
- Связывание сокета
- Перевод связанного сокета в состояние прослушивания
- Прием клиентских запросов соединения
- Отключение и закрытие сокетов
- Пример: подготовка и получение клиентских запросов соединения
Windows sockets что это такое
WinSock или Windows socket — это интерфейс программного программирования (API) созданный для реализации приложений в сети на основе протокола TCP/IP. То есть это просто группа функций . Для работы используется WSOCK32.DLL.
Практически это интерфейс к протоколу TCP/IP.
При взаимодействии клиент — сервер в сети каждого участника взаимодействия можно рассматривать как конечную точку. Сокет это вроде как и есть эта конечная точка. В приложении Вы определяете сокет. И хоть программирование сокетов в UNIX и Windows похоже, мы с Вами будем рассматривать именно Windows socket.
Незнаю интересно это или нет, но Windows socket разрабатывался на основе интерфейса Беркли для UNIX, но к ним добавлены функции поддержки событий Windows.
Есть две версии WinSock
- WinSock 1.1 — поддержка только TCP/IP
- WinSock 2.0 — Поддерка дополнительного программного обеспечения
Спецификация WinSock разделяет функции на три типа:
- Функции Беркли
- Информационные функции (получение информации о наименовании доменов, службах, протоколах Internet)
- Расширения Windows для функций Беркли
Все функции могут быть блокирующие и неблокирующие. Обычно блокирующие это функции Беркли. То есть при работе такой функции нельзя выполнять другие функции WinSock.
Давайте расмотрим как производится подключение к серверу. Сначала программа подключается к адресу IP с созданием сокета. Программа будет ждать подключения. Для подключения программа клиент тоже создает сокет и пытается подключиться к сокету сервера. Но сервер не спит . Только он увидит попытку подключения он создаст новый сокет. И этот новый сокет будет использоваться для взаимодействия с клиентом. А тот, к которому была попытка подключения будет ждать следующего. На этой основе производится взаимодействие сервера и многими программами.
Сам сокет может быть создан на основе:
- TCP (transport control protocol) — надежное соединение
- UDP (user datagram protocol) — ненадежное соединения
Windows sockets что это такое
Добрый день, уважаемые посетители и читатели блога, недавно я на одном из форумов наткнулся на дискуссию, на тему того, что такое сокеты windows и как их посмотреть и подумал, что это неплохая тема для статьи. Подумал и написал :)). Думаю эта заметка будет полезна начинающим системным администраторам, в понимании того, как на транспортном уровне модели OSI найти проблему или проверить доступность приложения по номеру порта, хочу отметить, что эти знания фундаментальные, и их понимание заложит в вас отличную базу, для дальнейшей работы, на любом предприятии.
Понятие windows sockets приложения
Что такое сокет — это по сути область оперативной памяти, в которой на определенном сетевом порту (TCP/UDP) работает приложение, и именно оно прослушивает нужный порт. Какая задача стояла перед программистами, задача простая переместить информацию из оперативной памяти одного компьютера, в оперативную память другого компьютера. Дальше это может быть представлено как:
Номер сокета Windows, это номер ячейки оперативной памяти к которому привязано приложение. Приложение привязавшись к некой области оперативной памяти начинает туда писать данные и сокет из этой области памяти начинает мелкими пакетами по 65 кбайт, начинает передавать в сеть на другое устройство. На другой стороне эти кусочки, так же помещаются в ОЗУ, желательно в той же последовательности, и сокет с той стороны начинает их разбирать, и представлять пользователю из какого то приложения.
Список сокетов приложений в Windows
У меня стоит операционная систем Windows 8.1, показывать я буду все на ней, в прошлый раз мы кстати в ней лечили баг, что был не найден run vbs. Для того, чтобы посмотреть какие сокеты соответствуют каким приложениям и каким TCP/UDP портам, вы должны перейти в директорию
и отыскать там файл services, он будет без расширения, но его можно открыть правой кнопкой мыши через обычный блокнот, у меня это будет notepad++.
Открыв данный файл вы увидите название службы (приложения) номер сокета (TCP/UDP) и описание. Для примера видно, что сервер ftp работает по портам 20 и 21. По сути тут системе и задаются стандарты по которым должны работать службы.
Как посмотреть сокеты приложений у вас на компьютере
Тут два метода которыми я пользуюсь. Представим себе ситуацию, что вы установили некое приложение, все работает пытаетесь на него попасть с другого компьютера по сети, но не можете. Отключаете брандмауэр на том компьютере, и все начинает работать, вывод блокируется какой то порт этого приложения. Его вычислить поможет нам две утилиты, первая из командной строки, а вторая имеет удобный графический интерфейс.
Более подробно про утилиту netstat и ее использование читайте по ссылке. В итоге вы получите сводную таблицу, в которой будет вот, что интересно:
- Тип протокола — TCP или UDP
- Адрес отправителя с указанием портов
- Адрес получателя с указанием портов
- Состояние — либо слушает либо установил соединение и закрыто
- PID это номер идентифицирующий приложение
Как видите в примере у меня много сессий по 443 и 80 порту по сути это браузер Google Chrome.
Приложение заняв сокет, уже не позволит на нем же открыться другому приложению, Сокет живет минут 10.
Как изменить время жизни сокета
Для того, чтобы в операционной системе Windows изменить TTL или как его еще называют время жизни сокета, вам необходимо воспользоваться реестром. Открываете редактор реестра Windows 8.1. Переходите в раздел
Там есть ключ TcpTimedWaitDelay, если его нет то нужно его создать. Укажите нужное вам десятичное значение. TcpTimedWaitDelay — Этот параметр определяет интервал времени, в течение которого подключение находится в состоянии TIME_WAIT, прежде чем будет закрыто. Пока подключение находится в состоянии TIME_WAIT, пара сокетов не может быть использована повторно (это т. н. «состояние 2MSL»). Согласно документу RFC793, данное значение должно в два раза превышать максимальное время жизни пакета в сети.
Как узнать PID приложения
Для того, чтобы узнать PID приложения в Windows, вам нужно в области пуск кликнуть правой кнопкой мыши и из контекстного меню выбрать Диспетчер задач
В диспетчере задач, найдите поле ИД процесса .если его не будет то добавьте.
Теперь давайте смотреть, в правой части я вижу приложение skype и оно имеет PID 4352, смотрим в левой части экрана и видим порты и Ip адрес, которые слушает данной приложение.
Ну и еще есть утилита TCPView, про нее я уже отдельно писал. Утилита бесплатная и имеет графический интерфейс, запустив ее вы сразу видите кому какой PID принадлежит. Так же видно все сокеты и их состояния.
Думаю, у вас теперь не должно быть вопроса, что такое сокеты windows и как их посмотреть, всем спасибо за прочтение.
Winsock
Windows Sockets API (WSA), название которого было укорочено до Winsock. Это техническая спецификация, которая определяет, как сетевое программное обеспечение Windows будет получать доступ к сетевым сервисам, в том числе, TCP/IP. Он определяет стандартный интерфейс между клиентским приложением (таким как FTP клиент или веб-браузер) и внешним стеком протоколов TCP/IP. Он основывается на API модели сокетов Беркли, использующейся в BSD для установки соединения между программами.
Содержание
Предыстория
Ранние операционные системы Microsoft, такие как MS-DOS и Microsoft Windows имели ограничения по работе с сетью, которые были связаны с использованием протокола NetBIOS. В частности, Microsoft в то время не поддерживал работу со стеком протоколов TCP/IP. Несколько университетских групп и коммерческих фирм, включая MIT, FTP Software, Sun Microsystems, Ungermann-Bass, и Excelan, представляли свои решения для работы с TCP/IP в MS-DOS, часто как часть программно-аппаратного комплекса. После выпуска Microsoft Windows 2.0 к этим разработчикам присоединились и другие, такие как Distinct и NetManage, которые помогли в организации поддержки протоколов TCP/IP для Windows. Недостаток, с которыми столкнулись все вышеперечисленные разработчики, состоял, в том, что каждый из них использовал свои собственные API (Application Programming Interface). Без единой стандартной модели программирования, трудно было убедить независимых разработчиков программного обеспечения в создании сетевых программ, которые могли бы работать на основе реализации стека протоколов TCP/IP любого из разработчиков. Стало понятно, что необходима стандартизация.
Модель Sockets API Windows была предложена Мартином Холлом из JSB Software (позднее Stardust Technologies), в рамках информационной группы BOF (Birds of a Feather) и согласована в сети CompuServe на BBS в октябре 1991 года. Первое издание спецификации было написано Мартином Холлом, Марком Tовфиком из Microdyne (позднее Sun Microsystems), Джеффоом Арнольдом (Sun Microsystems), Генри Сандерс и Дж. Алардом из Microsoft, и при участии многих других разработчиков. Возникли вопросы о том, кому присвоить авторские права, права интеллектуальной собственности. В конце концов, было решено, что авторские права на спецификацию будут принадлежать пяти авторам, как физическим лицам.
Сокеты Windows. Порты и адреса сокета Windows Sockets: Ports and Socket Addresses
В этой статье объясняются термины «порт» и «адрес», используемые с сокетами Windows. This article explains the terms «port» and «address» as used with Windows Sockets.
Порту Port
Порт определяет уникальный процесс, для которого может быть предоставлена служба. A port identifies a unique process for which a service can be provided. В приведенном контексте порт связан с приложением, которое поддерживает сокеты Windows. In the present context, a port is associated with an application that supports Windows Sockets. Идея состоит в том, чтобы идентифицировать каждое приложение Windows Sockets уникальным образом, чтобы на одном компьютере одновременно выполнялось несколько приложений Windows Sockets. The idea is to identify each Windows Sockets application uniquely so you can have more than one Windows Sockets application running on a machine at the same time.
Некоторые порты зарезервированы для общих служб, таких как FTP. Certain ports are reserved for common services, such as FTP. Следует избегать использования этих портов, если вы не предоставляете такую службу. You should avoid using those ports unless you are providing that kind of service. Сведения о зарезервированных портах приведены в спецификации Windows Sockets. The Windows Sockets specification details these reserved ports. Файл WINSOCK. H также перечисляет их. The file WINSOCK.H also lists them.
Чтобы разрешить библиотеке DLL Windows sockets выбрать пригодный для использования порт, в качестве значения порта необходимо передать 0. To let the Windows Sockets DLL select a usable port for you, pass 0 as the port value. MFC выбирает значение порта больше 1 024 десятичного числа. MFC selects a port value greater than 1,024 decimal. Вы можете получить значение порта, выбранное MFC, вызвав функцию члена CAsyncSocket:: жетсоккнаме . You can retrieve the port value that MFC selected by calling the CAsyncSocket::GetSockName member function.
Адрес сокета Socket Address
Каждый объект сокета связан с IP-адресом в сети. Each socket object is associated with an Internet Protocol (IP) address on the network. Как правило, адрес — это имя компьютера, например «ftp.microsoft.com», или разделенное число, например «128.56.22.8». Typically, the address is a machine name, such as «ftp.microsoft.com», or a dotted number, such as «128.56.22.8».
При попытке создания сокета обычно не требуется указывать собственный адрес. When you seek to create a socket, you typically do not need to specify your own address.
Возможно, на компьютере имеется несколько сетевых карт (или ваше приложение может когда-нибудь на таком компьютере), каждое из которых представляет отдельную сеть. It is possible that your machine has multiple network cards (or your application might someday run on such a machine), each representing a different network. В этом случае может потребоваться указать адрес, указывающий, какой сетевой адаптер будет использоваться сокетом. If so, you might need to give an address to specify which network card the socket will use. Это может быть расширено и возможной проблемой переносимости. This is certain to be an advanced usage and a possible portability issue.
Дополнительные сведения см. в разделе: For more information, see:
ГЛАВА 12
Сетевое программирование с помощью сокетов Windows
Именованные каналы пригодны для организации межпроцессного взаимодействия как в случае процессов, выполняющихся на одной и той же системе, так и в случае процессов, выполняющихся на компьютерах, связанных друг с другом локальной или глобальной сетью. Эти возможности были продемонстрированы на примере клиент-серверной системы, разработанной в главе 11, начиная с программы 11.2.
Однако как именованные каналы, так и почтовые ящики (в отношении которых для простоты мы будем использовать далее общий термин — «именованные каналы», если различия между ними не будут играть существенной роли) обладают тем недостатком, что они не являются промышленным стандартом. Это обстоятельство усложняет перенос программ наподобие тех, которые рассматривались в главе 11, в системы, не принадлежащие семейству Windows, хотя именованные каналы не зависят от протоколов и могут выполняться поверх многих стандартных промышленных протоколов, например TCP/IP.
Возможность взаимодействия с другими системами обеспечивается в Windows поддержкой сокетов (sockets) Windows Sockets — совместимого и почти точного аналога сокетов Berkeley Sockets, де-факто играющих роль промышленного стандарта. В этой главе использование API Windows Sockets (или «Winsock») показано на примере модифицированной клиент-серверной системы из главы 11. Результирующая система способна функционировать в глобальных сетях, использующих протокол TCP/IP, что, например, позволяет серверу принимать запросы от клиентов UNIX или каких-либо других, отличных от Windows систем.
Читатели, знакомые с интерфейсом Berkeley Sockets, при желании могут сразу же перейти непосредственно к рассмотрению примеров, в которых не только используются сокеты, но также вводятся новые возможности сервера и демонстрируются дополнительные методы работы с библиотеками, обеспечивающими безопасную многопоточную поддержку.
Привлекая средства обеспечения взаимодействия между разнородными системами, ориентированные на стандарты, интерфейс Winsock открывает перед программистами возможность доступа к высокоуровневым протоколам и приложениям, таким как ftp, http, RPC и СОМ, которые в совокупности предоставляют богатый набор высокоуровневых моделей, обеспечивающих поддержку межпроцессного сетевого взаимодействия для систем с различной архитектурой.
В данной главе указанная клиент-серверная система используется в качестве механизма демонстрации интерфейса Winsock, и в процессе того, как сервер будет модифицироваться, в него будут добавляться новые интересные возможности. В частности, нами будут впервые использованы точки входа DLL (глава 5) и внутрипроцессные серверы DLL. (Эти новые средства можно было включить уже в первоначальную версию программы в главе 11, однако это отвлекло бы ваше внимание от разработки основной архитектуры системы.) Наконец, дополнительные примеры покажут вам, как создаются безопасные реентерабельные многопоточные библиотеки.
Поскольку интерфейс Winsock должен соответствовать промышленным стандартам, принятые в нем соглашения о правилах присвоения имен и стилях программирования несколько отличаются от тех, с которыми мы сталкивались в процессе работы с описанными ранее функциями Windows. Строго говоря, Winsock API не является частью Win32/64. Кроме того, Winsock предоставляет дополнительные функции, не подчиняющиеся стандартам; эти функции используются лишь в случае крайней необходимости. Среди других преимуществ, обеспечиваемых Winsock, следует отметить улучшенную переносимость результирующих программ на другие системы.
Сокеты Windows
Winsock API разрабатывался как расширение Berkley Sockets API для среды Windows и поэтому поддерживается всеми системами Windows. К преимуществам Winsock можно отнести следующее:
• Перенос уже имеющегося кода, написанного для Berkeley Sockets API, осуществляется непосредственно.
• Системы Windows легко встраиваются в сети, использующие как версию IPv4 протокола TCP/IP, так и постепенно распространяющуюся версию IPv6. Помимо всего остального, версия IPv6 допускает использование более длинных IP-адресов, преодолевая существующий 4-байтовый адресный барьер версии IPv4.
• Сокеты могут использоваться совместно с перекрывающимся вводом/выводом Windows (глава 14), что, помимо всего прочего, обеспечивает возможность масштабирования серверов при увеличении количества активных клиентов.
• Сокеты можно рассматривать как дескрипторы (типа HANDLE) файлов при использовании функций ReadFile и WriteFile и, с некоторыми ограничениями, при использовании других функций, точно так же, как в качестве дескрипторов файлов сокеты применяются в UNIX. Эта возможность оказывается удобной в тех случаях, когда требуется использование асинхронного ввода/вывода и портов завершения ввода/вывода.
• Существуют также дополнительные, непереносимые расширения.
Инициализация Winsock
Winsock API поддерживается библиотекой DLL (WS2_32.DLL), для получения доступа к которой следует подключить к программе библиотеку WS_232.LIB. Эту DLL следует инициализировать с помощью нестандартной, специфической для Winsock функции WSAStartup, которая должна быть первой из функций Winsock, вызываемых программой. Когда необходимость в использовании функциональных возможностей Winsock отпадает, следует вызывать функцию WSACleanup. Примечание. Префикс WSA означает «Windows Sockets asynchronous …» («Асинхронный Windows Sockets …»). Средства асинхронного режима Winsock нами здесь не используются, поскольку при возникновении необходимости в выполнении асинхронных операций мы можем и будем использовать потоки.
Хотя функции WSAStartup и WSACleanup необходимо вызывать в обязательном порядке, вполне возможно, что они будут единственными нестандартными функциями, с которыми вам придется иметь дело. Распространенной практикой является применение директив препроцессора #ifdef для проверки значения символической константы _WIN32 (обычно определяется Visual C++ на стадии компиляции), в результате чего функции WSA будут вызываться только тогда, когда вы работаете в Windows). Разумеется, такой подход предполагает, что остальная часть кода не зависит от платформы.
int WSAStartup(WORD wVersionRequired, LPWSADATA ipWSAData);
wVersionRequired — указывает старший номер версии библиотеки DLL, который вам требуется и который вы можете использовать. Как правило, версии 1.1 вполне достаточно для того, чтобы обеспечить любое взаимодействие с другими системами, в котором у вас может возникнуть необходимость. Тем не менее, во всех системах Windows, включая Windows 9x, доступна версия Winsock 2.0, которая и используется в приведенных ниже примерах. Версия 1.1 считается устаревшей и постепенно выходит из употребления.
Функция возвращает ненулевое значение, если запрошенная вами версия данной DLL не поддерживается.
Младший байт параметра wVersionRequired указывает основной номер версии, а старший байт — дополнительный. Обычно используют макрос MAKEWORD; таким образом, выражение MAKEWORD (2,0) представляет версию 2.0.
ipWSAData — указатель на структуру WSADATA, которая возвращает информацию о конфигурации DLL, включая старший доступный номер версии. О том, как интерпретировать ее содержимое, вы можете прочитать в материалах оперативной справки Visual Studio.
Чтобы получить более подробную информацию об ошибках, можно воспользоваться функцией WSAGetLastError, но для этой цели подходит также функция GetLastError, а также функция ReportError, разработанная в главе 2.
По окончании работы программы, а также в тех случаях, когда необходимости в использовании сокетов больше нет, следует вызывать функцию WSACleanup, чтобы библиотека WS_32.DLL, обслуживающая сокеты, могла освободить ресурсы, распределенные для этого процесса.
Создание сокета
Инициализировав Winsock DLL, вы можете использовать стандартные (Berkeley Sockets) функции для создания сокетов и соединений, обеспечивающих взаимодействие серверов с клиентами или взаимодействие равноправных узлов сети между собой.
Используемый в Winsock тип данных SOCKET аналогичен типу данных HANDLE в Windows, и его даже можно применять совместно с функцией ReadFile и другими функциями Windows, требующими использования дескрипторов типа HANDLE. Для создания (или открытия) сокета служит функция socket.
SOCKET socket(int af, int type, int protocol);
Тип данных SOCKET фактически определяется как тип данных int, потому код UNIX остается переносимым, не требуя привлечения типов данных Windows.
af — обозначает семейство адресов, или протокол; для указания протокола IP (компонент протокола TCP/IP, отвечающий за протокол Internet) следует использовать значение PF_INET (или AF_INET, которое имеет то же самое числовое значение, но обычно используется при вызове функции bind).
type — указывает тип взаимодействия: ориентированное на установку соединения (connection-oriented communication), или потоковое (SOCK_STREAM), и дейтаграммное (datagram communication) (SOCK_DGRAM), что в определенной степени сопоставимо соответственно с именованными каналами и почтовыми ящиками.
protocol — является излишним, если параметр af установлен равным AF_INET; используйте значение 0.
В случае неудачного завершения функция socket возвращает значение INVALID_SOCKET.
Winsock можно использовать совместно с протоколами, отличными от TCP/IP, указывая различные значения параметра protocol; мы же будем использовать только протокол TCP/IP.
Как и в случае всех остальных стандартных функций, имя функции socket не должно содержать прописных букв. Это является отходом от соглашений, принятых в Windows, и продиктовано необходимостью соблюдения промышленных стандартов.
Серверные функции сокета
В нижеследующем обсуждении под сервером будет пониматься процесс, который принимает запросы на образование соединения через заданный порт. Несмотря на то что сокеты, подобно именованным каналам, могут использоваться для создания соединений между равноправными узлами сети, введение указанного различия между узлами является весьма удобным и отражает различия в способах, используемых обеими системами для соединения друг с другом.
Если не оговорено иное, типом сокетов в наших примерах всегда будет SOCK_STREAM. Сокеты типа SOCK_DGRAM рассматривается далее в этой главе.
Связывание сокета
Следующий шаг заключается в привязке сокета к его адресу и конечной точке (endpoint) (направление канала связи от приложения к службе). Вызов socket, за которым следует вызов bind, аналогичен созданию именованного канала. Однако не существует имен, используя которые можно было бы различать сокеты данного компьютера. Вместо этого в качестве конечной точки службы используется номер порта (port number). Любой заданный сервер может иметь несколько конечных точек. Прототип функции bind приводится ниже.
int bind(SOCKET s, const struct sockaddr *saddr, int namelen);
s — несвязанный сокет, возвращенный функцией socket.
saddr — заполняется перед вызовом и задает протокол и специфическую для протокола информацию, как описано ниже. Кроме всего прочего, в этой структуре содержится номер порта.
namelen — присвойте значение sizeof (sockaddr).
В случае успешного выполнения функция возвращает значение 0, иначе SOCKET_ERROR. Структура sockaddr определяется следующим образом:
typedef struct sockaddr SOCKADDR, *PSOCKADDR;
Первый член этой структуры, sa_family, обозначает протокол. Второй член, sa_data, зависит от протокола. Internet-версией структуры sa_data является структура sockaddr_in:
struct in_addr sin_addr; /* 4-байтовый IP-адрес */
typedef struct sockaddr_in SOCKADDR_IN, *PSOCKADDR IN;
Обратите внимание на использование типа данных short integer для номера порта. Кроме того, номер порта и иная информация должны храниться с соблюдением подходящего порядка следования байтов, при котором старший байт помещается в крайней позиции справа (big-endian), чтобы обеспечивалась двоичная совместимость с другими системами. В структуре sin_addr содержится подструктура s_addr, заполняемая уже знакомым нам 4-байтовым IP-адресом, например 127.0.0.1, указывающим систему, чей запрос на образование соединения должен быть принят. Обычно удовлетворяются запросы любых систем, в связи с чем следует использовать значение INADDR_ANY, хотя этот символический параметр должен быть преобразован к корректному формату, как показано в приведенном ниже фрагменте кода.
Для преобразования текстовой строки с IP-адресом к требуемому формату можно использовать функцию inet_addr, поэтому член sin_addr.s_addr переменной sockaddr_in инициализируется следующим образом:
О связанном сокете, для которого определены протокол, номер порта и IP-адрес, иногда говорят как об именованном сокете (named socket).
Перевод связанного сокета в состояние прослушивания
Функция listen делает сервер доступным для образования соединения с клиентом. Аналогичной функции для именованных каналов не существует.
int listen(SOCKET s, int nQueueSize);
Параметр nQueueSize указывает число запросов на соединение, которые вы намерены помещать в очередь сокета. В версии Winsock 2.0 значение этого параметра не имеет ограничения сверху, но в версии 1.1 оно ограничено предельным значением SOMAXCON (равным 5).
Прием клиентских запросов соединения
Наконец, сервер может ожидать соединения с клиентом, используя функцию accept, возвращающую новый подключенный сокет, который будет использоваться в операциях ввода/вывода. Заметьте, что исходный сокет, который теперь находится в состоянии прослушивания (listening state), используется исключительно в качестве параметра функции accept, а не для непосредственного участия в операциях ввода/вывода.
Функция accept блокируется до тех пор, пока от клиента не поступит запрос соединения, после чего она возвращает новый сокет ввода/вывода. Хотя рассмотрение этого и выходит за рамки данной книги, возможно создание неблокирующихся сокетов, а в сервере (программа 12.2) для приема запроса используется отдельный поток, что позволяет создавать также неблокирующиеся серверы.
SOCKET accept(SOCKET s, LPSOCKADDR lpAddr, LPINT lpAddrLen);
s — прослушивающий сокет. Чтобы перевести сокет в состояние прослушивания, необходимо предварительно вызвать функции socket, bind и listen.
lpAddr — указатель на структуру sockaddr_in, предоставляющую адрес клиентской системы.
lpAddrLen — указатель на переменную, которая будет содержать размер возвращенной структуры sockaddr_in. Перед вызовом функции accept эта переменная должна быть инициализирована значением sizeof(struct sockaddr_in).
Отключение и закрытие сокетов
Для отключения сокетов применяется функция shutdown(s, how). Аргумент how может принимать одно из двух значений: 1, указывающее на то, что соединение может быть разорвано только для посылки сообщений, и 2, соответствующее разрыву соединения как для посылки, так и для приема сообщений. Функция shutdown не освобождает ресурсы, связанные с сокетом, но гарантирует завершение посылки и приема всех данных до закрытия сокета. Тем не менее, после вызова функции shutdown приложение уже не должно использовать этот сокет.
Когда работа с сокетом закончена, его следует закрыть, вызвав функцию closesocket(SOCKET s). Сначала сервер закрывает сокет, созданный функцией accept, а не прослушивающий сокет, созданный с помощью функции socket. Сервер должен закрывать прослушивающий сокет только тогда, когда завершает работу или прекращает принимать клиентские запросы соединения. Даже если вы работаете с сокетом как с дескриптором типа HANDLE и используете функции ReadFile и WriteFile, уничтожить сокет одним только вызовом функции CloseHandle вам не удастся; для этого следует использовать функцию closesocket.
Пример: подготовка и получение клиентских запросов соединения
Ниже приводится фрагмент кода, показывающий, как создать сокет и организовать прием клиентских запросов соединения.
В этом примере используются две стандартные функции: htons («host to network short» — «ближняя связь») и htonl («host to network long» — «дальняя связь»), которые преобразуют целые числа к форме с обратным порядком байтов, требуемой протоколом IP.
Номером порта сервера может быть любое число из диапазона, допустимого для целых чисел типа short integer, но для определенных пользователем служб обычно используются числа в диапазоне 1025—5000. Порты с меньшими номерами зарезервированы для таких известных служб, как telnet или ftp, в то время как порты с большими номерами предполагаются для использования других стандартных служб.
struct sockaddr_in SrvSAddr; /* Адресная структура сервера. */
SrvSock = socket(AF_INET, SOCK_STREAM, 0);