Ядро Windows
Ядро состоит из набора функций, находящихся в файле Ntoskrnl.exe. Этот набор предоставляет основные механизмы (службы диспетчеризации потоков и синхронизации), используемые компонентами исполняющей системы, а также поддержкой архитектурно-зависимого оборудования низкого уровня (например, диспетчеризацией прерываний и исключений), которое имеет отличия в архитектуре каждого процессора. Код ядра написан главным образом на C, с ассемблерным кодом, предназначенным для задач, требующих доступа к специальным инструкциям и регистрам процессора, доступ к которым из кода на языке C затруднен. Подобно различным вспомогательным функциям, ряд функций ядра документированы в WDK (и их описание может быть найдено при поиске функций, начинающихся с префикса Ke), поскольку они нужны для реализации драйверов устройств.
Ядро предоставляет низкоуровневую базу из четко определенных, предсказуемых примитивов и механизмов операционной системы, позволяющую высоко уровневым компонентам исполняющей системы выполнять свои функции. Само ядро отделено от остальной исполняющей системы путем реализации механизмов операционной системы и уклонения от выработки политики. Оно оставляет почти все политические решения, за исключением планирования и диспетчеризации потоков, реализуемых ядром, за исполняющей системой. За пределами ядра исполняющая система представляет потоки и другие ресурсы совместного использования в виде объектов. Эти объекты требуют некоторых издержек, например, на дескрипторы для управления ими, на проверки безопасности для их защиты и на ресурсные квоты, выделяемые при их создании. В ядре, реализующем набор менее сложных объектов, называемых «объектами ядра», подобные издержки исключены, что помогает ядру управлять основной обработкой и поддерживать создание исполняющих объектов. Большинство объектов уровня исполнения инкапсулируют один или несколько объектов ядра, принимая их, определенные в ядре свойства. Один набор объектов ядра, называемых «управляющими объектами», определяет семантику управления различными функциями операционной системы. В этот набор включены объекты асинхронного вызова процедур — APC, отложенного вызова процедур — deferred procedure call (DPC), и несколько объектов, используемых диспетчером ввода-вывода, например, объект прерывания.
Еще один набор объектов ядра, известных как «объекты-диспетчеры», включает возможности синхронизации, изменяющие или влияющие на планирование потоков. Объекты-диспетчеры включают поток ядра, мьютекс (называемый среди специалистов «мутантом»), событие, пару событий ядра, семафор, таймер и таймер ожидания. Исполняющая система использует функции ядра для создания экземпляров объектов ядра, работы с ними и создания более сложных объектов, предоставляемых в пользовательском режиме. Область ядра, относящаяся к управлению процессором, и блок управления (KPCR и KPRCB). Для хранения специфических для процессора данных ядром используется структура данных, называемая областью, относящейся к управлению процессором, или KPCR (KernelProcessorControlRegion). KPCR содержит основную информацию, такую как процессорная таблица диспетчеризации прерываний (interrupt dispatch table, IDT), сегмент состояния задачи (task-state segment, TSS) и таблица глобальных дескрипторов (globaldescriptortable, GDT). Она также включает состояние контроллера прерываний, которое используется вместе с другими модулями, такими как ACPI-драйвер и HAL.
Для обеспечения простого доступа к KPCR ядро хранит указатель на эту область в регистре fs на 32-разрядной системе Windows и в регистре gs на Windows-системе x64. На системах IA64 KPCR всегда находится по адресу 0xe0000000ffff0000. KPCR также содержит вложенную структуру данных, которая называется блоком управления процессором (kernelprocessorcontrolblock, KPRCB). В отличие от области KPCR, которая документирована для драйверов сторонних производителей и для других внутренних компонентов ядра Windows, KPRCB является закрытой структурой, используемой только кодом ядра, который находится в файле Ntoskrnl.exe. В этом блоке содержится:
— информация о планировании (такая как текущий, следующий и приостановленный потоки, предназначенные для выполнения на процессоре);
— предназначенная для процессора база данных диспетчера (включающая готовые очереди для каждого приоритетного уровня);
— информация о производителе центрального процессора и идентификационная информация (модель, степпинг, скорость, биты особенностей);
— информация о топологии центрального процессора и о технологии доступа к неоднородной памяти — NUMA (информация об узле, о количестве логических процессоров в каждом ядре и т. д.);
— информация о размерах кэш-памяти;
— информация об учете времени (такая как время DPC и обработки прерывания) и многое другое.
В KPRCB также содержится вся статистика процессора, такая как статистика ввода-вывода, статистика диспетчера кэша, статистика DPC и статистика диспетчера памяти. И наконец, KPRCB иногда используется для хранения структур выравнивания границ кэша для каждого процессора, необходимых для оптимизации доступа к памяти, особенно на NUMA-системах. Например, система не выгружаемого и выгружаемого пула со стороны выглядит как списки, хранящиеся в KPRCB.
Win32 API
- Объекты и процессы ядра Windows
- Многозадачность
- Объекты ядра Windows
- Процессы и потоки
- Объекты ядра
- Объекты GDI и User
- Управление памятью в Win32
- Организация виртуальной памяти в Windows
- Кучи и менеджеры куч
- Динамические хранилища
- Обработка ошибок в Win32
- Обработка ошибок с помощью функции GetLastError
- Обработка ошибок с помощью функции SetErrorMode
- Экстренное завершение приложения
Любой программист, создающий приложения Windows, должен иметь представление о процессах, происходящих в операционной системе, для создания качественных и эффективных приложений. Такие знания помогут решить многие проблемы, возникающие при разработке приложений, тесно связанных с операционной системой. В рассмотренных ранее главах мы уже изучили понятие потока и многопоточности. Эти понятия имеют непосредственное отношение к процессам операционной системы.
В данной главе мы рассмотрим, что такое объект ядра и что такое процесс ядра операционной системы. Изучим объекты GDI и User. Рассмотрим, как Windows управляет памятью и как эта операционная система обрабатывает ошибки.
Объекты и процессы ядра Windows
Сразу оговоримся, что все сказанное в этой главе относится к следующим версиям Windows: Windows 95, 98, 2000 и Windows NT, т. к. только в данных версиях была введена поддержка 32-разрядных приложений.
Примечание.
Для среды Windows 3.1 Microsoft специально разработала пакет Win32s, позволяющий с некоторыми ограничениями использовать поддержку приложений Win32.
Ядро Windows (Windows kernel) — это часть операционной системы, которая обеспечивает поддержку низкоуровневых функций, необходимых для выполнения приложений. Например, всякий раз, когда приложению нужна дополнительная память, оно обращается к ядру Windows.
Между всеми вышеперечисленными системами существуют различия в поддержке 32-разрядных приложений. В табл. 1.8 перечислены некоторые отличия, существующие между тремя операционными системами.
Таблица 1.8. Различия операционных систем при поддержке Win32 API
Windows 3.1 с поддержкой Win32
32-битная система координат
Асинхронный файловый ввод/вывод
Асинхронная модель ввода информации
На уровне Windows 3.1
Поддержка многопроцессорных материнских плат
Динамический обмен данными (DDE) по сети
Поддержка процессоров других фирм-производителей (не Intel)
Безопасность (сертификат С2)
Разделяемое адресное пространство
Поддержка TAPI (Telephone API)
Системные ресурсы для объектов User и GDI
Практически не ограничены
Итак, Win32 API (Application Programming Interface) — это интерфейс разработки 32-разрядных приложений Windows.
Многозадачность
Многозадачность (multitasking) — свойство операционной системы выполнять одновременно несколько приложений.
Примечание
По сути, истинной многозадачности нет в большинстве из вышеперечисленных операционных систем. Происходит лишь переключение между задачами. Но, за счет того, что эти переключения происходят довольно часто, у пользователя создается впечатление, что приложения выполняются одновременно.
В ранних, 16-разрядных операционных системах поддерживалась так называемая кооперативная многозадачность (cooperative multitasking). Это такой вид многозадачности, когда приложение в процессе своего выполнения само «решает» передавать управление операционной системе или продолжать занимать процессорное время. При этом другие приложения, запущенные вместе с первым, просто не выполняют никаких действий. Данный вид многозадачности приводил к «зависаниям» операционной системы вместе со всеми запущенными приложениями, если «висло» приложение, захватившее ресурсы процессора.
На смену кооперативной многозадачности пришла вытесняющая многозадачность (preemptive multitasking). Вытесняющая многозадачность появилась лишь в 32-разрядных операционных системах. Данный вид многозадачности подразумевает, что управление всеми приложениями ведет операционная система. Она выделяет каждому приложению определенный квант времени процессора в зависимости от приоритета приложения (см. главу 3).
Объекты ядра Windows
Рассмотрим объекты, с которыми работает операционная система Windows.
Сразу обратим ваше внимание на то, что объекты Win32 и объекты Delphi — абсолютно разные объекты. В Win32 объекты делятся на объекты ядра (kernel) и объекты GDI и User.
Процессы и потоки
Процесс — это выполняющееся приложение Windows. Так как Windows — многозадачная операционная система, то в ней может работать сразу несколько процессов. Каждый процесс получает свое адресное пространство (размером до 4-х гигабайт). В этом пространстве хранится код приложения, его данные, а также все подключаемые библиотеки (DLL).
Сами процессы ничего не выполняют. Каждый процесс состоит из потоков (threads), которые выполняют код процесса (подробнее о потоках и об их создании см. главу 3). Любой процесс состоит как минимум из одного потока, который называется первичным или главным потоком (primary thread). Процесс может состоять из нескольких потоков, только один из которых будет главным.
Поток — это объект операционной системы, который представляет собой часть кода, находящегося внутри некоторого процесса. .
При создании процесса операционная система создает его главный поток, который может генерировать дополнительные потоки. При этом каждому потоку процесса Windows выделяет свои кванты времени процессора, в зависимости от приоритета потока.
Для работы с процессами Win32 API имеет встроенные функции, перечисленные в табл. 1.9.
Таблица 1.9. Функции Win32 API для работы с процессами
Объекты ядра
Объекты ядра (kernel objects) — это процессы, потоки, события, семафоры, мьютексы и т. д., т. е. все то, с чем работает ядро Windows.
При создании объекта он существует в адресном пространстве процесса. При этом дескриптор объекта доступен породившему его процессу. Данный дескриптор не может быть использован другими приложениями для доступа к объекту разных процессов. Но эта проблема разрешима: с помощью функций Win32 API процесс имеет возможность получения собственного дескриптора (отличного от дескриптора процесса, породившего объект) для уже существующего объекта.
Например, первый процесс создает именованный или неименованный мьютекс и возвращает его дескриптор с помощью команды createMutex. Для того чтобы данный мьютекс мог использоваться другим процессом, необходимо воспользоваться функцией openMutex, которая возвращает дескриптор уже существующего мьютекса.
При обращении к объектам ядра Windows использует счетчик обращений к объекту. При создании или использовании объекта ядра приложениями счетчик увеличивается. При прекращении использования объекта ядра приложением счетчик уменьшается. Наконец, при обнулении счетчика объект ядра уничтожается.
Объекты GDI и User
В Windows 3.1 не было объектов ядра. Доступ ко всем объектам операционной системы осуществлялся с помощью дескрипторов. Объекты операционной системы делились на две группы: объекты, находящиеся в локальной памяти модулей GDI и User, и объекты, находящиеся в глобальной памяти.
Интерфейс графического устройства (Graphical Device Interface, GDI) — это часть Windows, которая управляет шрифтами, средствами печати и другими графическими системами Windows.
Когда приложение выводит что-либо на экран, оно использует службы, представляемые GDI.
Объекты GDI- это палитры, изображения, шрифты, и т. д., т.е. то, чем управляет GDI.
Средства пользовательского интерфейса (User) — это часть Windows, отвечающая за все окна, которые создаются приложениями.
Объекты User — это, в первую очередь, окна, меню.
В 16-разрядной версии Windows имелась непосредственная связь между объектом и его дескриптором. Таким образом, в данной версии Windows существовала таблица, содержащая указатели на все объекты операционной системы. Эта таблица была доступна любому приложению или динамически компонуемой библиотеке Windows. Она называлась таблицей локальных дескрипторов (Local Descriptor Table). В результате, любое приложение (или DLL) могло обращаться к объекту, используемому другим приложением.
В 32-разрядной операционной системе объекты хранятся в собственных адресных пространствах процессов, и для каждого процесса существует своя собственная таблица дескрипторов объектов. Таким образом, каждый процесс теперь работает с собственными дескрипторами объектов.
Любые дескрипторы объектов GDI или User управляются специальными подсистемами Win32 API. Для GDI — это GDI.EXE, для User — USER.EXE. Данные подсистемы выполняют создание, освобождение и проверку корректности работы дескрипторов объектов.
Управление памятью в Win32
В данном разделе мы рассмотрим все, чего еще не касались ранее о распределении памяти в Win32.
Организация виртуальной памяти в Windows
Как нам уже известно, Win32 — это 32-разрядная операционная система. Таким образом, любое приложение, запущенное в Win32, может захватывать адресное пространство в размере 4 Гбайта. Каждое приложение (процесс операционной системы) обладает своим индивидуальным адресным пространством, которое не пересекается с адресными пространствами других приложений.
Процесс выделения памяти в Windows состоит из двух последовательных этапов:
— резервирования участка памяти (виртуального адресного пространства), необходимого размера для размещения приложения и его данных. На этом этапе, физически, операционная система не выделяет оперативную память. То есть, фактически, вы можете дать команду операционной системе зарезервировать 300 Мбайт адресного пространства, и при этом не займете практически никаких системных ресурсов. Вы можете непосредственно указать операционной системе адреса, которые резервируете, или предоставить это дело операционной системе;
Примечание
Адресное пространство в Win32 резервируется блоками по 64 Кбайта. Поэтому, несмотря на ваши пожелания, при резервировании адресного пространства операционная система реально зарезервирует первый (базовый) участок адресного пространства объемом 64 Кбайта. Данное разбиение адресного пространства на блоки служит для ускорения работы ядра операционной системы.
— выделения реальной, физической памяти в зарезервированный участок виртуального адресного пространства. На данном этапе операционная система выделяет реальный блок памяти, который также состоит из небольших блоков.
Примечание
Минимальный блок памяти, с которым работает операционная система, называется страницей памяти. Размер страницы памяти различен в разных операционных системах. Например, в Windows NT — он равен 8 Кбайт, а в Windows 95/98 — 4 Кбайта.
Так как объем оперативной памяти компьютера обычно достаточно небольшой (для современных компьютеров 32-128 Мбайт), то операционная система вынуждена при нехватке основной оперативной памяти использовать так называемый файл подкачки (swap file) или виртуальную память. Таким образом, если в оперативной памяти компьютера имеется несколько приложений, запущенных одновременно, и им не хватает оперативной памяти, Windows просто выгружает те страницы памяти, к которым длительное время не было обращений. В случае, когда приложению потребуется выгруженная страница памяти, Windows освободит страницу, выгрузив страницу, к которой давно не было обращений, и загрузит на ее место требуемую, после чего вернет управление приложению.
Все вышеперечисленные действия абсолютно незаметны для приложения. Приложению не нужно заботиться о выгрузке и загрузке страниц, все эти действия выполняет операционная система.
Кучи и менеджеры куч
Серьезные приложения интенсивно используют механизмы выделения и освобождения памяти. В коммерческих приложениях широко применяются такие элементы, как: динамические массивы, строки, объекты и многое другое. При этом, создание и удаление подобных элементов происходит довольно часто, а сами элементы имеют относительно небольшой размер.
Такая работа по выделению памяти и ее освобождению, по отношению к элементам небольшого размера, является неэффективной. Во-первых, снижается производительность, т. к. резервирование адресного пространства и выделение страниц памяти происходит на уровне ядра операционной системы. Во-вторых, теряются большие объемы памяти. Например, если приложение требует выделить 256 байт под строку, операционная система реально выделяет одну страницу памяти, объемом 4 или 8 килобайт (в зависимости от операционной системы).
Для решения проблемы выделения памяти небольшим элементам приложения была введена организация по принципу кучи (heap). Куча — это достаточно большой непрерывный участок памяти, из которого выделяются небольшие блоки. Для того чтобы куча могла функционировать, в операционную систему был включен так называемый менеджер кучи. Менеджер кучи — это специальный механизм, который следит за выделением и освобождением блоков памяти. Для каждого вновь созданного процесса Windows по умолчанию создает кучу. Все кучи, которые создаются операционной системой, являются потокобезопасными. Следовательно, у программиста есть возможность обращаться к одной куче из разных потоков одновременно. Для работы с менеджером кучи Win32 API можно пользоваться следующими функциями (табл. 1.10).
Таблица 1.10. Функции Win32 API для работы с кучей