Загрузка linux по сети tftp

Загрузка системы из сети

Предисловие.

Это придумано давным давно. Во всяком случае в статье, написанной в конце прошлого века (1998 год), идею сетевой загрузки автор называет старой. И это не удивительно, загрузка операционной системы по сети — мечта любого администратора. Ведь операционная система загруженная с сервера всегда будет «белой и пушистой», а изменения и обновления достаточно будет внести в загрузочный образ на сервере, вместо того, чтобы бегать с флешкой по всему парку компьютеров.

Почему же такая хорошая идея не получила широкого распространения? Из-за сложности? Нет! Серверы для сетевой загрузки настраиваются довольно просто, как правило одним конфигурационным текстовым файлом, и, забегая вперёд, скажу, что в lanboot_server создание файлов конфигурации производится автоматически. На практике это сводится к «включил, и готово».

Что потребуется?.

Впрочем, не всё так страшно. Скрипт запуска lanboot (/usr/sbin/lanboot) должен работать и в других линуксах, например в Simply Linux (ALT) скрипт создал правильные файлы конфигурации и сервер запустился, только загружаемых файлов в «TFTP directory» (/var/lib/tftpboot) не оказалось, и это не удивительно, ведь откуда взяться файлам PuppyRus в ALTLinux.

Продолжим.

Из чего собрано.

Для загрузки Linux по сети нам потребуется tftp-сервер (используется tftp-hpa-5.0), bootp или dhcp (я выбрал dhcp-4.1.1, хотя сначала использовал bootp) и inetd или xinetd (я выбрал inetd, он проще).

Как настраивается.

1. Bootp

Пример /etc/bootptab

2. Dhcpd

Пример /etc/dhcpd.conf

3. Tftp

Файловый сервер с упрощённым протоколом.

Пример /etc/exports

4. Inetd

У нас служит для запуска tftp-сервера и bootp-сервера. Но может запускать и другие службы. Файл конфигурации /etc/inetd.conf. Файл длинный, «на все случаи жизни». Поэтому привожк только нужные строки.

Пример /etc/inetd.conf.

5. Xinetd

Функции те же, что и у inetd, но настройки сложнее. Установлен в Альтлинуксе.

Пример /etc/xinetd.conf

Автоматическая настройка.

Для автоматической настройки переменные берутся из вывода стандартных linux-команд ifconfig и route. Поэтому их можно получить в любом Linux.

Эти переменные вписаны в соответствующие места шаблонов конфигурационных файлов содержащихся в скрипте lanboot. При выполнении скрипта значения переменных подставляются в шаблон и сгенерированный таким образом файл конфигурации отправляется «по месту назначения». Это избавляет вас от рутинной работы и человеческих ошибок тоже. Единственное непременное условие: сеть должна быть настроена, иначе откуда брать значения переменных.

Источник

Бездисковая загрузка с использованием PXE и iSCSI на примере Ubuntu

В этой статье будет рассказано, как запилить сервер, который будет при включении грузиться по PXE, потом монтировать корневую файловую систему по iSCSI и спокойно жить дальше.

Что необходимо?

Для загрузки системы нужны три компонента: ядро, initramfs и корневая файловая система.
Ядро и initramfs мы передадим по TFTP, а корневую файловую систему — по iSCSI.

iSCSI-таргеты

Для Ubuntu возможно использовать различные iSCSI-таргеты. Вот неполный их список:

  • ISCSI Enterprise Target — одна из самых старых реализаций iSCSI-таргета на Linux. Насколько мне известно, жива и здравствует, однако требует установки (в Ubuntu) через DKMS и совсем лёгкого дребезга бубнов. На opennet.ru есть рабочий HOWTO, применимый и к более поздним версиям ОС (Precise)
  • SCSI Target Framework (STGT/TGT) — реализация iSCSI-таргета, портированная из BSD-систем. В отличии от IET, позволяет использовать не только iSCSI, но и другие родственные технологии (такие, как, например, SRP). К сожалению, код STGT в части iSCSI в линуксе работает в userspace. Как следствие, производительность получается где-то в районе плинтуса.
  • SCST — новая реализация универсального таргета для Linux. По заявлениям разработчиков обладает массой преимуществ и фишек. В ядро не включена, для установки требует патчей исходников ядра и продолжительного зубодробительного секса. По слухам, мила, прекрасна и похожа на сакуру. Когда-то давно ее использовали, например, в Оверсан-Скалакси (их опыт вкратце описан на хабре). Пакеты для Ubuntu перестали поддерживаться около полутора лет назад, в SVN есть некоторая активность, то есть проект жив и здравствует. Кстати, разработчики — русские парни 🙂
  • LIO — Linux Unified Target, универсальная система, реализующая iSCSI, SRP, FCoE и несколько других вариантов экспорта устройств в сеть. Официально включена в ядро и является стандартным таргетом, начиная с версии 2.6.38. К ней есть определенные претензии в плане того, что на официальном сайте активно продвигается проприетарная сборка, обладающая большим функционалом, но оставим вопли RMS.

Я буду пользоваться LIO, но ничто не мешает реализовать аналогичный функционал на другом таргете или на проприетарной промышленной СХД, вроде NetApp или EMC.

Вариант, предлагаемый ниже, состоит из двух серверов: таргета, который дополнительно к iSCSI-таргету содержит на себе DHCP и tftp-сервер, необходимые для начальной загрузки и инициатора, у которого дисков нет, а есть только сетевая карта.

На таргете желательно использовать LVM для нарезания томов, но можно использовать и обычные файлы.

1. Образ целевой системы

Создадим том размером 16 ГиБ, который будет отдаваться по iSCSI (моя VolumeGroup называется vg00, том будет называться client):

1.1. Разделы и файловые системы

Я люблю и уважаю LVM за его гибкость и удобство в работе, поэтому использую сетап, не требующий таблицы разделов на образе client. Вместо этого сразу на client создаётся еще одна VolumeGroup, которая потом режется на lv-тома.

Создадим файловую систему и разметим раздел под swap:

1.2 Сам образ системы

Примонтируем файловую систему и развернем туда с помощью debootstrap минимальный образ:

Стоит слегка подправить получившуюся систему:

Обратите внимание, мы заменили initiatorname.iscsi. IQN — это iSCSI Qualified Name, он обязательно должен быть уникальным. IQN нашего инициатора — iqn.2013-02.org.example.client:default.

Читайте также:  Asus vivobook s14 драйвера для windows 10

Приведем fstab к нужному виду:

Чтобы не оказаться в глупом положении, нужно изменить пароль в новой системе.

Отмонтируем rootfs и деактивируем группу томов, чтобы случайно ее не задеть:

Образ системы готов! Загрузчик ему не нужен, ядро будет запускаться с помощью pxelinux.

2. iSCSI-таргет

Установим userspace-утилиты для управления таргетом:

И запустим утилиту управления таргетом — targetcli:

2.1. Backstore

Находясь в консоли targetcli необходимо выполнить следующие команды:

Таким образом будет создан backstore для нашего тома vg00-client.

2.2. iSCSI

Назначим предварительно созданный backstore этому таргету:

Назначим таргету интерфейс для работы (без указания параметров назначатся все активные интерфейсы):

Настроим права доступа (документация по правам доступа доступна на официальном сайте:

2.3. Сохранение настроек

Несмотря на то, что действия в targetcli выполняются немедленно, они не сохраняются и после перезагрузки все таргеты не вернутся. В этом поведение LIO похоже на поведение любых других ядерных служб (iptables, ebtables, ipvsadm и т. п.). При сохранении настроек targetcli компилирует всю конфигурацию в shell-скрипт, который просто скармливает нужные данные в configFS.

Сохраним все настройки:

Таргет готов! Перейдем к настройке DHCP + TFTP.

3. DHCP-сервер

Предполагаем следующую конфигурацию:
Серверы живут в сети 10.0.0.0/24, таргет живет на 10.0.0.2, клиент получает по DHCP адрес 10.0.0.5.

Мануалов в сети море, поэтому коротко:

4. TFTP-сервер

Опять же, мануалов в сети море.

5. Syslinux

Копируем pxelinux.0 в /var/lib/tftpboot:

Также нам необходим образ ядра (можно взять с хост-системы). Сейчас у меня используется ядро от Ubuntu версии 3.2.0.37:

Дальше нужно собрать правильный initramfs. Для этого нам нужен модуль iSCSI:

Pxelinux будет искать файл с конфигурацией в директории pxelinux.cfg относительно корня tftp-сервера. Создадим ему конфигурацию:

Вместо XX необходимо подставить MAC-адрес сетевой карты client’а, записанный в нижнем регистре через минусы, а не через двоеточия.

Логин и пароль здесь необходимо использовать те же, что были указаны при настройке прав доступа к таргету.

Настройка Syslinux закончена. Теперь можно насладиться загрузкой 🙂

Мой лог загрузки выглядит примерно так:

Итоги:

Можно вполне использовать iSCSI для загрузки серверов, не имеющих своих дисков (актуально для виртуализации, самопильных систем хранения данных, серверов, которые не должны долго жить и т.п.).

Есть другой вариант, использовать инициатор, встроенный в сетевую карту. Такой подход иногда бывает невозможен по различным причинам (самая банальная — отсутствие необходимого функционала в самой карточке), а также обладает несколько меньшей гибкостью.

Присутствует security-hole, поскольку /proc/cmdline доступен любому желающему в системе и этот любой желающий может получить доступ к экспортированному тому. Поэтому можно на таргете закрыть фаерволом все адреса, кроме необходимого.

Описанная схема — по большей части драфт и основа для инфраструктуры сетевой загрузки.

Источник

Бездисковая загрузка по сети и жизнь после нее

История

Теория

По сути, для того, чтобы система загрузилась ей необходимо 3 компонента — ядро, начальное окружение initramfs и корневой каталог, в котором система будет работать.

Практика

Все действия проводятся на машине с ubuntu precise.

Для начала настроим PXE. Мануалов на эту тему уйма, поэтому я расскажу только самую суть.
Ставим ваш любимый dhcp сервер, например isc-dhcp-server, который будет раздавать машинкам ip адреса и указывать путь к файлу pxelinux.0, который будет отдавать tftp сервер (tftp-hpa или же atftp).

Пример конфига dhcp сервера. В примере pxe-сервер находится по адресу 10.0.0.1.

Запускаем tftp сервер (в ubuntu он имеет init-скрипт, но вполне вероятно, что вам придется запускать его и через inetd/xinetd).
Проверяем работоспособность. Кладем файл в каталог /var/lib/tftpboot и пробуем стянуть его tftp клиентом.

В принципе неважно, где вы возьмете файл pxelinux.0, так как он является просто начальным загрузчиком, в который мы передаем то, что надо грузить дальше.
Вы можете сделать красивую менюшку в загрузчике, но сейчас нам это не нужно, поэтому мой pxelinux.cfg/default выглядит так

rootfs

Образ rootfs собираем через debootstrap, чрутимся в него и ставим необходимые программы. Настраиваем сеть, hostname, фаервол и прочее, чем больше сделаем настроек, тем больше будет образ. Главное не забудьте сменить пароль на рута.

С нашим минимальным набором система получилась весом 200Мб.

Initramfs

В этом примере мы будем забирать образ корневой фс с веб-сервера, расположенного на нашем сервере сетевой загрузки, то есть на 10.0.0.1. Решение было таким просто потому, что в нашем initramfs была утилита wget. Чтобы не тянуть большой объем данных по сети, мы решили сжать образ. Это можно было бы сделать и обычным tar, но можно попробовать squashfs, тем более, что обычно в initramfs tar не встроен, с другой стороны, ничего не мешает его туда добавить.

Squashfs
Squashfs — это сжимающая файловая система, которая включена в ядро с версии 2.6.29. С ее помощью можно заархивировать каталог, примонтировать на loop устройство и читать с него, для записи же необходимо провести процедуру добавления файлов в архив. Так как при обращении к squashfs, вы читаете из архива, то это дает дополнительную нагрузку на cpu.

Для более эфферктивного сжатия вы можете использовать опцию -comp, чтобы установить тип сжатия, по умолчанию используется gzip.

Далее надо научить init из initramfs забирать образ корня и помещать его в оперативную память.

init в initramfs — это скрипт на sh, который производит разбор опций из cmdline, монтирует фс, делает switch_root и запускает гланый init-процесс системы.
Воспользуемся этим и допишем свои опции для cmdline. Напишем скрипт ram, который будет вызываться при значении опции boot=ram.

Через параметр rooturl можно указывать откуда качать образ корневой фс. Для работы со squashfs необходимо подгрузить ее модуль в ядро. Указываем в /etc/initramfs-tools/initramfs.conf BOOT=ram и пересобираем initramfs

Включаем машинку, на которой будем тестировать, и смотрим на происходящее. После успешной загрузки мы получили бездисковую систему, которая занимает в памяти около 300Мб, при этом мы может писать в нее, но после ребута, система вернется в свое первоначальное состояние.

В это примере, мы использовали squashfs просто для сжатия образа, но почему бы нам не попробовать примонтировать корневой раздел в squashfs и не посмотреть, что получится? Меняем наш скрипт, в функции do_rammount() оставляем только монтирование squashfs.

Пересобираем initramfs, запускаем, смотрим. Система загружается в режиме ro, но зато занимает в памяти всего около 180Мб.
В каких-то случаях монтирование в режиме ro это хорошо, но нас это не устраивает, но и просто так тратить оперативную память нам тоже не хочется. Выход же был найден при помощи Aufs.

Читайте также:  Windows details view all folders

Aufs
Aufs позволяет делать каскадно-объединённое монтирование файловых систем — одну в режиме только на чтение, а вторую в rw. Работает она в режиме copy-on-write, то есть все изменения записываются на rw систему и после этого чтение производится с нее же.
Опять переписываем наш скрипт.
В фукнцию mountroot() добавляем

А фукнцию do_rammount() приводим к следующему виду:

Пересобираем initramfs, запускаем, смотрим. Система занимает в памяти 181Мб, при этом мы можем менять ее, писать, читать. Все изменения хранятся отдельно в /mnt/rw, а сама система хранится в /mnt/ro.

В результате мы получили систему, которая грузится по сети, занимает небольшой объем в памяти, при этом после каждой перезагрузки пропадают все изменения (поэтому надо заранее собирать все нужные продукты жизнедеятельности системы в надежное место).

Все вышеперечисленные способы имеют право на жизнь. Надеюсь, что эта информация вам пригодится, а мне же будет интересно почитать/послушать ваши комментарии.
Спасибо за внимание.

Источник

Разбираемся с загрузкой ArchLinux по сети

В предыдущей статье мы подготовили базовую систему. Закончим настройку в следующей статье.

Здесь мы создадим новую систему Arch Linux, способную загружаться по сети и автоматически запускать браузер Firefox, а между делом разберёмся с необходимой функциональностью загрузочного сервера. Потом настроим сам сервер и попробуем с него загрузиться. Всё произойдёт в точности, как на картинке, которую нашёл гугл по запросу «PXE»:

Снова устанавливаем Linux

Archlinux выгодно отличается от готовых дистрибутивов тем, что установка новой системы из рабочей машины осуществляется точно так же, как при использовании установочного образа, и в обоих случаях вы получаете самую актуальную на данный момент версию системы. Понадобятся лишь небольшие установочные скрипты:

Совершенно предсказуемое начало:

Установим только базовые пакеты, поэтому:

Далее повторите все действия вплоть до установки загрузчика согласно предыдущей статье. Вот чек-лист:

  • проведите русификацию (интернационализацию);
  • укажите часовой пояс и настройте автозапуск службы NTP;
  • добавьте пользователя username и заблокируйте его пароль от изменения.

Сравним загрузку с диска и загрузку по сети

В предыдущей статье мы рассматривали процесс загрузки Linux с точки зрения внутреннего накопителя. Сейчас мы представим происходящее глазами сетевой карты. Картинка из заголовка хорошо иллюстрирует события за исключением того, что все серверы в нашем случае будут работать на одном компьютере.

Сразу после включения компьютера, срабатывает код PXE (Preboot eXecution Environment, произносится пикси — спасибо вики), разместившийся непосредственно в ПЗУ сетевой карты. Его задача — найти загрузчик и передать ему управление.

Сетевой адаптер совершенно не представляет в какой сети сейчас находится, поэтому назначает себе адрес 0.0.0.0 и отправляет сообщение DHCPDISCOVER. К сообщению прикреплются паспортные данные, которые обязательно нам пригодятся:

  • ARCH Option 93 — архитектура PXE клиента (UEFI, BIOS);
  • Vendor-Class Option 60 — идентификатор, который у всех PXE клиентов имеет вид «PXEClient:Arch:xxxxx:UNDI:yyyzzz», где цифры xxxxx – архитектура клиента, yyyzzz – мажорная и минорная версии драйвера UNDI (Universal Network Driver Interface).

Адаптер ожидает получить ответ от DHCP сервера по протоколу BOOTP (Bootstrap Protocol), где помимо нужного IP адреса, маски подсети и адреса шлюза, присутствует информация об адресе TFTP-сервера и названии файла загрузчика, который с него следует забрать. Сервер TFTP, в свою очередь, просто отдаёт любому желающему любые файлы, которые у него попросят.

После получения ответа и применения сетевых настроек, дальнейшее управление загрузкой передаётся полученному файлу, размер которого не может превышать 32 кБ, поэтому используется двухстадийная загрузка. Всё необходимое для отображения на экране загрузочного меню докачивается следом по тому же протоколу TFTP. Подавляющее большинство руководств по сетевой загрузке использует загрузчик pxelinux, но GRUB умеет то же самое, и даже больше: в нём есть разные загрузчики для разных архитектур, включая UEFI.

Далее загрузка приостанавливается на время отображения загрузочного меню, а потом по тому же протоколу TFTP докачиваются выбранные файлы vmlinuz и initramfs, которым передается дальнейшее управление загрузкой. На этом этапе уже нет вообще никакой разницы в механизме загрузки по сети или с внутреннего накопителя.

Настраиваем загрузку по сети с помощью GRUB

Поскольку GRUB на нашем сервере уже есть, создадим с его помощью структуру папок для сетевого клиента вот таким образом:

В папке $root/boot появится папка grub и несколько других. Эту файловую структуру мы будем целиком «отдавать» с помощью TFTP-сервера. Сейчас мы используем 64-битный ArchLinux по той причине, что в 32-битной системе нет папки /grub/x86_64-efi/, которая требуется для загрузки систем UEFI. Можно взять эту папку с нашего 64-битного сервера и в неизменном виде перенести на 32-битный сервер, тогда в нём также появится поддержка UEFI.

Создайте файл конфигурации загрузчика со следующим содержимым:

Я взял файл grub.cfg с сервера и убрал из него всё то, что не участвует в отображении загрузочного меню GRUB или как-то связано с дисками.

Обратите внимание на знакомую нам строку с параметрами ядра:

Как и в предыдущий раз присваиваем значение переменной «ip». Напоминаю, что она используется в обработчике «net», который мы приспособили для настройки сетевой карты в загрузочном сервере. Здесь снова указывается статический IP адрес и постоянное имя сетевой карты eth0. Значения $net_default_ip и $net_default_server подставляются GRUB самостоятельно на основании данных, полученных из самого первого DHCP запроса. $net_default_ip – это выделенный для нашей машины IP адрес, а $net_default_server — IP адрес загрузочного сервера.

Большинство руководств по сетевой загрузке (среди обнаруженных на просторах рунета), предлагают устанавливать переменную так «ip=. eth0:dhcp», что вынуждает обработчик net отправлять новый запрос DHCPDISCOVER для повторного получения сетевых настроек.

Нет объективной причины лишний раз «спамить» DHCP-сервер и ждать, пока он откликнется, поэтому снова используем статику и не забываем указать DNS-серверы. Такую задачу мы уже решали, поэтому просто копируем нужные файлы и добавляем службу в автозагрузку:

Возвращаемся к строке с параметрами ядра. Ещё незнакомая нам команда add_efi_memmap (EFI memory map) добавляет EFI memory map доступной RAM. В прошлый раз мы её намеренно пропустили, из-за сравнительно сложной предварительной разметки носителя для поддержки UEFI. Сейчас нам ничего размечать не нужно, потому что файловая система на загрузочном сервере уже существует и будет использоваться в неизменном виде.

Читайте также:  После установки windows disk read error occurred

Переменная ядра — nfsroot показывает, где именно в сети нужно искать корневую файловую систему. Она выполняет ту же самую функцию, что и переменная root в загрузочном сервере. В данном случае указан адрес NFS-сервера, который в нашем случае совпадает с TFTP-сервером, но это совершенно необязательно.

Подготавливаем initramfs

За подключение корневой файловой системы по протоколу NFS отвечает обработчик net. В прошлый раз мы убирали из него эту функциональность, но сейчас она нам понадобится, правда, в немного доработанном виде. Дело в том, что обработчик net из коробки поддерживает подключение только по протоколу NFS версии 3. К счастью, поддержка 4-й версии добавляется очень просто.

Сначала установим пакет, в который входит нужный нам обработчик net, а также пакет утилит для работы с NFS (модуль nfsv4 и программа mount.nfs4):

Исправим обработчик net из папки hooks (вместо команды для монтирования nfsmount, теперь будем использовать mount.nfs4):

С помощью установщика обработчика из папки install добавим модуль nfsv4 и программу mount.nfsv4 в iniramfs. Сначала копируем и переименовываем заготовку:

Теперь исправляем только одну функцию build(), а всё остальное не трогаем:

Добавляем обработчик в initramfs путём исправления строки в файле mkinitcpio.conf:

Если ничего не трогать, то обычно для сжатия файла initramfs используется быстрый архиватор gzip. Мы не настолько торопимся, насколько хотим компрессию посильнее, поэтому воспользуемся xz. Снимаем комментарий с этой строки в файле mkinitcpio.conf:

Архивация xz происходит значительно дольше, но файл initramfs при этом уменьшается минимум в пару раз, из-за чего гораздо быстрее передается TFTP сервером по сети. Копируем пресет с нашего сервера, чтобы в ходе работы генерировался только один файл initramfs, после чего запускаем mkinitcpio:

Напоследок отредактируем fstab. Здесь можно подобрать опции монтирования корневой файловой системы, чтобы оптимизировать её работу, но мы ничего трогать не будем:

Базовая установка клиентской системы на этом закончена. Но мы хотим добавить графическое окружение и автоматический запуск Firefox.

Загружаемся в Firefox

Для уменьшения объема памяти, занимаемого нашей системой, мы откажемся от использования экранного менеджера и остановимся на простейшем оконном менеджере, например, openbox с автоматической авторизацией пользователя username. Использование «облегченных» компонентов позволит системе замечательно запускаться и работать даже на самом древнем железе.

Установим модули для поддержки VirtualBox, сервер X, симпатичный TTF-шрифт, openbox и firefox (все остальные модули будут установлены как зависимости):

Включаем автозагрузку службы virtualbox:

Добавим автоматический вход пользователя username без ввода пароля, для этого изменим строку запуска agetty:

Сразу же после авторизации пользователя выполняется файл

/.bash_profile, из его домашней папки, куда мы добавляем автоматический запуск графического сервера:

За запуском X-сервера должен стартовать openbox:

Закомментируйте следующие строки в самом конце файла (от строки twm до добавленной нами строки с запуском openbox, но не включая её):

Копируем конфигурационные файлы openbox

Добавляем firefox в автозагрузку в окружении openbox:

Поскольку мы только что от имени суперпользователя хозяйничали в домашней папке пользователя username, нам нужно вернуть ему права на все файлы, расположенные в его папке:

Подготовка системы к загрузке по сети закончена, и настала пора переходить к настройке загрузочного сервера. Теперь мы знаем, что для загрузки нам понадобятся:

  • DHCP-сервер с поддержкой протокола BOOTP для настройки сетевой карты;
  • TFTP-сервер для передачи загрузчика и файлов vmlinuz и initramfs, которые у нас находятся в папке $root/boot/grub;
  • NFS-сервер для размещения корневой файловой системы, которая лежит у нас в папке $root.

Настраиваем загрузочный сервер

Дальнейшие шаги с небольшими изменениями повторяют эту статью из вики, поэтому минимум комментариев с моей стороны.

Устанавливаем DHCP сервер

и приводим содержимое конфигурационного файла /etc/dhcpd.conf к следующему виду:

Как видите, DHCP-сервер будет отвечать только на те запросы DHCPDISCOVER, которые придут от PXE клиентов, а остальные просто проигнорируются.

Запускаем DHCP сервер:

Устанавливаем TFTP сервер

Скачиваем и устанавливаем необходимый пакет:

Нам нужно, чтобы TFTP сервер предоставлял доступ к файлам загрузчика, которые мы разместили в папке $root/boot. Для этого модифицируем запуск службы уже проверенным способом:

Первая строка «ExecStart=» отменяет выполнение команды, указанной в оригинальном файле $root/usr/lib/systemd/system/tftpd.service, а вместо нее выполняется «/usr/bin/in.tftpd -s /srv/nfs/diskless/boot». Только в том случае, когда служба запускается однократно (Type=oneshot), мы можем использовать несколько строк ExecStart= чтобы выполнять команды одну за другой. Это не тот случай, поэтому отменяем одну команду и выполняем другую.

Запускаем TFTP сервер:

Устанавливаем NFS сервер

Добавляем папку, в которую мы установили систему, в список экспортируемых:

Не забываем использовать синтаксис NFS v.4 указывая путь относительно папки с fsid=root (корневой по отношению ко всем остальным экспортируемым папкам, без указания которой ничего работать не будет).

Запускаем службы, обеспечивающие работу NFS-сервера:

На этом загрузочный сервер готов к работе.

Пробуем загрузиться по сети

Проследим за процессом загрузки с сервера с помощью программы tcpdump

Первая строка «ловит» запрос DHCPDISCOVER от PXE клиента. В выводе, отфильтрованном второй строкой, будут перечислены имена всех файлов, запрашиваемых по TFTP. Третья строка показывает два tcp-syn запроса, отправляемых в самом начале подключения по протоколу NFS (первое соединение осуществляется обработчиком net, а второе переподключение происходит во время обработки файла fstab).

Создаём новую виртуальную машину, для краткости будем называть её «клиент». В настройках сети снова указываем тип подключения «Сетевой мост» и включаем машину. Сразу же нажимаем клавишу F12 на клавиатуре для выбора загрузочного устройства, а потом клавишу l, чтобы загрузиться по сети.

Дождитесь окончания загрузки. Если всё в порядке, то на сервере добавляем используемые службы в автозагрузку:

Все серверы DHCP, TFTP и NFS мы запустили на одном загрузочном сервере. Делать так необязательно. Например, роутеры Mikrotik поддерживают Bootp и позволяют использовать себя в качестве TFTP — просто закачайте туда все нужные файлы и проверьте сетевые настройки.

Сейчас графическое окружение будет работать только в VirtualBox, потому что мы не устанавливали драйверы для «железных» видеокарт. Мы решим проблему автоматического подбора нужных драйверов в следующей статье. Заодно ускорим загрузку системы и сделаем из неё «живой образ».

Источник

Оцените статью