- Зомби процессы в Linux
- Как посмотреть зомби в операционной системе Linux
- Выполняю установку, настройку, сопровождение серверов. Для уточнения деталей используйте форму обратной связи
- Зомби процессы Linux
- Изучаем процессы в Linux
- Содержание
- Введение
- Атрибуты процесса
- Жизненный цикл процесса
- Рождение процесса
- Состояние «готов»
- Состояние «выполняется»
- Перерождение в другую программу
- Состояние «ожидает»
- Состояние «остановлен»
- Завершение процесса
- Состояние «зомби»
- Забытье
- Благодарности
Зомби процессы в Linux
Пользователи устройств, функционирующих на операционной системе Linux, часто сталкиваются с таким распространенным явлением, как зомби процессы. На слух это название звучит весьма устрашающе, и с этим трудно поспорить, но на практике его бояться не стоит. Зомби процессы не способны нанести серьезный удар системе, хотя многие пользователи стараются удалять их во избежание каких-либо непредсказуемых проблем. Чтобы лучше понимать ситуацию, необходимо детальнее разобраться с тем, каким образом стандартный процесс превращается в зомби.
Функция fork запускает дочерний процесс, который попадает под контроль родительского процесса. Если родительский процесс получает сигнал о завершении дочернего процесса, но при этом игнорирует его (в возможные причины сбоя вдаваться не станем), то этот процесс становится зомби.
Стоит ли обращать на них своё внимание? Ответ: делать это совершенно не обязательно. Так как процесс уже был завершен, он перестал использовать системные ресурсы, но остался в системе. Самое разумное в этом случае – сделать вид, что его не существует, и продолжать работать с устройством, как ни в чем не бывало. Если пользователь попытается «уничтожить» зомби при помощи специальной команды «kill», у него ничего не выйдет, ведь этот процесс не выполняется. Это действие является бессмысленным, а потому процесс продолжит отображаться в системе.
Чтобы полностью убрать зомби, необходимо уничтожить или перезапустить его родительский процесс. Если есть такое желание, обратитесь к инструкции ниже.
Как посмотреть зомби в операционной системе Linux
Это можно сделать при помощи утилиты ps:
$ ps aux | grep defunct
Как обнаружить в системе «родителя»:
$ ps -xal | grep defunct
После того, как нашли родителя можно удалить зомби. Это единственный способ уничтожения зомби процесса. Прямые команды не удалят их. Найдите в колонке идентификатор «родителя». В приведенном примере он находится в 4-м столбце под номером 761.
С помощью команды «kill» пошлем сигнал завершения, чтобы зомби процесс прекратил своё существование в системе.
В вашем случае вместо 761 будет стоять другое значение. Его нужно правильно обнаружить.
Данные рекомендации созданы для тех пользователей, которые любят порядок во всем. Но еще раз напоминаем: зомби в операционной системе Линукс безвредны, и являются абсолютно логичным следствием ошибки.
Источник
Выполняю установку, настройку, сопровождение серверов. Для уточнения деталей используйте форму обратной связи
Что же это такое?
Это дочерний процесс в Unix-системе, завершивший своё выполнение, но ещё присутствующий в списке процессов операционной системы, чтобы дать родительскому процессу считать код завершения. Процесс при завершении освобождает все свои ресурсы (за исключением PID — идентификатора процесса) и становится «зомби» — пустой записью в таблице процессов, хранящей код завершения для родительского процесса.
Система уведомляет родительский процесс о завершении дочернего с помощью сигнала SIGCHLD. Предполагается, что после получения SIGCHLD он считает код возврата с помощью системного вызова wait(), после чего запись зомби будет удалена из списка процессов. Если родительский процесс игнорирует SIGCHLD (а он игнорируется по умолчанию), то зомби остаются до его завершения.
А теперь возникают вопросы: как же всё-таки их найти и убить? Найти их очень просто. Вот несколько вариантов:
1)
top | grep zombie
225 processes: 1 running, 222 sleeping, 2 zombie
2)
ps aux | grep -w Z
root 3994 0,0 0,0 0 0 ?? Z 13июн11 16:23,02
root 3995 0,0 0,0 0 0 ?? Z 13июн11 13:43,28
3)
ps -alx | awk ‘$10
Что касается «убийства», то их нельзя просто так убить. Самый правильный вариант — найти родительский процесс и перезапустить его. Некоторые могут посоветовать и перегрузиться, но это не выход.
Находим родительский процесс:
ps ajx | grep -w Z
root 3994 3992 3992 3992 0 Z ?? 16:23,02
root 3995 3992 3992 3992 0 Z ?? 13:43,28
3-я колонка как раз и показывает pid родительского процесса. Смотрим, что это за процесс:
ps auxww | grep 3992
root 3992 0,0 0,2 30664 9872 ?? Ss 13июн11 0:08,21 [exilog_agent] (perl5.12.3)
Собственно мы нашли виновника. Это exilog_agent. А дальше — либо просто прибиваем родительский процесс либо перезапускаем его:
#kill -9 3992
#top | grep zombie
#
Источник
Зомби процессы Linux
Каждая программа, которая выполняется в Linux, — это системный процесс, у которого есть свой идентификатор. Каждый процесс может запускать дочерние процессы с помощью функции fork. Такие процессы остаются под контролем родительского процесса и не могут быть завершены без его ведома. Если один из дочерних процессов всё же завершился, а его родительский процесс не смог получить об этом информацию, то такой дочерний процесс становится зомби.
Зомби процессы Linux не выполняются и убить их нельзя, даже с помощью sigkill, они продолжают висеть в памяти, пока не будет завершён их родительский процесс.
Посмотреть такие процессы можно с помощью утилиты ps, здесь они отмечаются как defunct:
ps aux | grep defunct
Если вы попытаетесь убить такой процесс с помощью сигнала KILL, то ничего не выйдет:
Чтобы его завершить, нужно найти «родителя» этого процесса. Для этого используйте команду:
ps -xal | grep defunct
Здесь идентификатор родительского процесса находится в четвёртой колонке (PPID). Теперь мы можем послать ему сигнал завершения, и такого процесса в системе больше не будет:
Для большего удобства вы можете использовать утилиты top или htop, но принцип их действия будет аналогичным, поэтому я не буду здесь его рассматривать. Теперь вы знаете, что делать, если в вашей системе появились зомби процессы Linux.
Источник
Изучаем процессы в Linux
В этой статье я хотел бы рассказать о том, какой жизненный путь проходят процессы в семействе ОС Linux. В теории и на примерах я рассмотрю как процессы рождаются и умирают, немного расскажу о механике системных вызовов и сигналов.
Данная статья в большей мере рассчитана на новичков в системном программировании и тех, кто просто хочет узнать немного больше о том, как работают процессы в Linux.
Всё написанное ниже справедливо к Debian Linux с ядром 4.15.0.
Содержание
Введение
Системное программное обеспечение взаимодействует с ядром системы посредством специальных функций — системных вызовов. В редких случаях существует альтернативный API, например, procfs или sysfs, выполненные в виде виртуальных файловых систем.
Атрибуты процесса
Процесс в ядре представляется просто как структура с множеством полей (определение структуры можно прочитать здесь).
Но так как статья посвящена системному программированию, а не разработке ядра, то несколько абстрагируемся и просто акцентируем внимание на важных для нас полях процесса:
- Идентификатор процесса (pid)
- Открытые файловые дескрипторы (fd)
- Обработчики сигналов (signal handler)
- Текущий рабочий каталог (cwd)
- Переменные окружения (environ)
- Код возврата
Жизненный цикл процесса
Рождение процесса
Только один процесс в системе рождается особенным способом — init — он порождается непосредственно ядром. Все остальные процессы появляются путём дублирования текущего процесса с помощью системного вызова fork(2) . После выполнения fork(2) получаем два практически идентичных процесса за исключением следующих пунктов:
- fork(2) возвращает родителю PID ребёнка, ребёнку возвращается 0;
- У ребёнка меняется PPID (Parent Process Id) на PID родителя.
После выполнения fork(2) все ресурсы дочернего процесса — это копия ресурсов родителя. Копировать процесс со всеми выделенными страницами памяти — дело дорогое, поэтому в ядре Linux используется технология Copy-On-Write.
Все страницы памяти родителя помечаются как read-only и становятся доступны и родителю, и ребёнку. Как только один из процессов изменяет данные на определённой странице, эта страница не изменяется, а копируется и изменяется уже копия. Оригинал при этом «отвязывается» от данного процесса. Как только read-only оригинал остаётся «привязанным» к одному процессу, странице вновь назначается статус read-write.
Состояние «готов»
Сразу после выполнения fork(2) переходит в состояние «готов».
Фактически, процесс стоит в очереди и ждёт, когда планировщик (scheduler) в ядре даст процессу выполняться на процессоре.
Состояние «выполняется»
Как только планировщик поставил процесс на выполнение, началось состояние «выполняется». Процесс может выполняться весь предложенный промежуток (квант) времени, а может уступить место другим процессам, воспользовавшись системным вывозом sched_yield .
Перерождение в другую программу
В некоторых программах реализована логика, в которой родительский процесс создает дочерний для решения какой-либо задачи. Ребёнок в данном случае решает какую-то конкретную проблему, а родитель лишь делегирует своим детям задачи. Например, веб-сервер при входящем подключении создаёт ребёнка и передаёт обработку подключения ему.
Однако, если нужно запустить другую программу, то необходимо прибегнуть к системному вызову execve(2) :
или библиотечным вызовам execl(3), execlp(3), execle(3), execv(3), execvp(3), execvpe(3) :
Все из перечисленных вызовов выполняют программу, путь до которой указан в первом аргументе. В случае успеха управление передаётся загруженной программе и в исходную уже не возвращается. При этом у загруженной программы остаются все поля структуры процесса, кроме файловых дескрипторов, помеченных как O_CLOEXEC , они закроются.
Как не путаться во всех этих вызовах и выбирать нужный? Достаточно постичь логику именования:
- Все вызовы начинаются с exec
- Пятая буква определяет вид передачи аргументов:
- l обозначает list, все параметры передаются как arg1, arg2, . NULL
- v обозначает vector, все параметры передаются в нуль-терминированном массиве;
- Далее может следовать буква p, которая обозначает path. Если аргумент file начинается с символа, отличного от «/», то указанный file ищется в каталогах, перечисленных в переменной окружения PATH
- Последней может быть буква e, обозначающая environ. В таких вызовах последним аргументом идёт нуль-терминированный массив нуль-терминированных строк вида key=value — переменные окружения, которые будут переданы новой программе.
Семейство вызовов exec* позволяет запускать скрипты с правами на исполнение и начинающиеся с последовательности шебанг (#!).
Есть соглашение, которое подразумевает, что argv[0] совпадает с нулевым аргументов для функций семейства exec*. Однако, это можно нарушить.
Любопытный читатель может заметить, что в сигнатуре функции int main(int argc, char* argv[]) есть число — количество аргументов, но в семействе функций exec* ничего такого не передаётся. Почему? Потому что при запуске программы управление передаётся не сразу в main. Перед этим выполняются некоторые действия, определённые glibc, в том числе подсчёт argc.
Состояние «ожидает»
Некоторые системные вызовы могут выполняться долго, например, ввод-вывод. В таких случаях процесс переходит в состояние «ожидает». Как только системный вызов будет выполнен, ядро переведёт процесс в состояние «готов».
В Linux так же существует состояние «ожидает», в котором процесс не реагирует на сигналы прерывания. В этом состоянии процесс становится «неубиваемым», а все пришедшие сигналы встают в очередь до тех пор, пока процесс не выйдет из этого состояния.
Ядро само выбирает, в какое из состояний перевести процесс. Чаще всего в состояние «ожидает (без прерываний)» попадают процессы, которые запрашивают ввод-вывод. Особенно заметно это при использовании удалённого диска (NFS) с не очень быстрым интернетом.
Состояние «остановлен»
В любой момент можно приостановить выполнение процесса, отправив ему сигнал SIGSTOP. Процесс перейдёт в состояние «остановлен» и будет находиться там до тех пор, пока ему не придёт сигнал продолжать работу (SIGCONT) или умереть (SIGKILL). Остальные сигналы будут поставлены в очередь.
Завершение процесса
Ни одна программа не умеет завершаться сама. Они могут лишь попросить систему об этом с помощью системного вызова _exit или быть завершенными системой из-за ошибки. Даже когда возвращаешь число из main() , всё равно неявно вызывается _exit .
Хотя аргумент системного вызова принимает значение типа int, в качестве кода возврата берется лишь младший байт числа.
Состояние «зомби»
Сразу после того, как процесс завершился (неважно, корректно или нет), ядро записывает информацию о том, как завершился процесс и переводит его в состояние «зомби». Иными словами, зомби — это завершившийся процесс, но память о нём всё ещё хранится в ядре.
Более того, это второе состояние, в котором процесс может смело игнорировать сигнал SIGKILL, ведь что мертво не может умереть ещё раз.
Забытье
Код возврата и причина завершения процесса всё ещё хранится в ядре и её нужно оттуда забрать. Для этого можно воспользоваться соответствующими системными вызовами:
Вся информация о завершении процесса влезает в тип данных int. Для получения кода возврата и причины завершения программы используются макросы, описанные в man-странице waitpid(2) .
Передача argv[0] как NULL приводит к падению.
Бывают случаи, при которых родитель завершается раньше, чем ребёнок. В таких случаях родителем ребёнка станет init и он применит вызов wait(2) , когда придёт время.
После того, как родитель забрал информацию о смерти ребёнка, ядро стирает всю информацию о ребёнке, чтобы на его место вскоре пришёл другой процесс.
Благодарности
Спасибо Саше «Al» за редактуру и помощь в оформлении;
Спасибо Саше «Reisse» за понятные ответы на сложные вопросы.
Они стойко перенесли напавшее на меня вдохновение и напавший на них шквал моих вопросов.
Источник